지반구조물 유한요소망 작성 Part 2 GEN-3D

2007년 2월

지반구조물 유한요소망 작성 Part 2 GEN-3D

Comtec Research 서울특별시 서초구 서초3동 1566-10 서진벤처빌딩 502호 우137-874 Tel : (02) 597-9824 Fax : (02) 597-9827 E-mail : info@ComtecResearch.co.kr

1.1 GEN-3D 란?	1
1.2 GEN-3D 관련 Menu 및 주요기능 사용법	2
1.2.1 Program Menu	2
1.2.2 Working Directory	2
1.2.3 GEN-3D 실행하기	3
1.2.4 Mesh Plot 하기	4
1.2.5 PLOT-3D	6
1.2.5.1 PLOT-3D-View	6
1.2.5.2 PLOT-3D-Plot	9
1.2.5.3 PLOT-3D-Toolbar	11
1.3 GEN-3D 사용자 매뉴얼	12
2.1 Ex_1 Curved Box	19
2.1.1 2D Mesh 파일 작성하기	22
2.1.1.1 2D Mesh 파일 Listing (2D_Mesh.dat)	23
2.1.2 3D로 확장하기 위한 ZI.dat 파일 작성하기	25
2.1.2.1 ZI.dat 파일 Listing	27
2.1.3 GEN-3D 실행하기	
2.1.4 생성된 3D Mesh Plot 하기	31
2.1.5 생성된 3D Mesh 파일 보기	33
2.2 Ex_2 NATM Tunnel	
- 2.2.1 2D Mesh 파일 작성하기	40
2.2.1.1 2D Mesh 파일 Listing (2D_Mesh.dat)	41
2.2.2 3D로 확장하기 위한 ZI.dat 파일 작성하기	44
2.2.2.1 ZI.dat 파일 Listing	45
2.2.3 GEN-3D 실행하기	45
2.2.4 생성된 3D Mesh Plot 하기	48
2.2.5 생성된 3D Mesh 파일 보기	49
2.3 Ex.3 RCD Pile	55
2.5 <u>BA_</u> 5 ROD THE 2.3.1 2D Mesh 파익 좌성하기	56
2.0.1 2D Mican 기본 기 0억/기 2.3.2 3D로 화장하기 위하 7I dat 파인 자서하기	
2.0.2 05고 ㅋ 0 이기 미난 21.0at ㅋ ፫ ㅋ 0 이기 2.3.2.1 71 dat 파익 Listing	66
2.3.2.1 Zituat 기본 Listing	00 79
2.0.0 ULIY 0D 글 701/1 2.3.4 새성되 3D Mash Plat 차기	12 72
2.0 0 0 년 00 Micsh Flot 이기 2 3 5 새서되 3D Mach 파인 비기	
2.0.0 0 0 U UD MICSH 7 2 17/1	

1.1 GEN-3D 란?

GEN-3D는 2차원 대표단면 Mesh를 지정한 방향으로 확장하여 3차원 Mesh 파일을 자동 생성하는 역할을 합니다. 2차원 대표단면 Mesh는 AIG를 사용한 ADDRGN-2D 프로그램이 나 기타 PRESMAP 프로그램 (PRESMAP-2D, PRESMAP-GP, NATM-2D 등)을 실행시 켜 생성할 수 있습니다. GEN-3D에 의해 생성된 3차원 Mesh 파일은 SMAP-3D Mesh 파 일로 사용됩니다.

GEN-3D의 세부사항은 SMAP-3D 사용자 Manual에 상세히 설명되어 있습니다. GEN-3D는 SMAP-3D의 *RUN => PRESMAP => GEN-3D* Menu를 클릭하여 실행 (Execute)합니다.

1.2 GEN-3D 관련 Menu 및 주요기능 사용법

1.2.1 Program Menu

GEN-3D를 사용하기 위하여 바탕화면의 SMAP 아이콘을 클릭하여 *Program Menu* => SMAP-3D를 선택합니다.

🕙 Program Menu		
Programs		
C SMAP-S2	C SMAP-T2	<u>O</u> K
C SMAP-2D	O TUNA	Cancel
• SMAP-3D	O TUNA Plus	Key Info.

그림 1. Program Menu.

1.2.2 Working Directory

- 1. Disk drive를 선택해서 Directory를 선택합니다. 모든 Output 파일들은 지정된 W orking Directory에 저장될 것입니다.
- 2. 작업파일이 저장될 폴더를 지정하여 차후의 관리를 용이하게 하기 위한 작업입니다.
- 3. 작업을 시작하기 전에 폴더 지정을 잘해두면 작업파일들의 정리가 쉬워집니다.
- 4. C:드라이브가 아닌 드라이브의 하부 Directory를 설정하여도 관계없습니다.
- 5. 원본폴더에 있는 예제파일을 수정하거나 학습할 때는 원본폴더내의 파일들이 손상되지 않도록 Input 폴더를 만들어 기존의 파일들을 복사하여 붙여 넣은 후에 프로그램을 실행시키면 됩니다.
- 6. 다른 Directory로 이동할 때는 *SETUP => General-Working Directory => Browser* 창을 이용하여 변경하시면 됩니다.

Working Directory Select Working Directory to Save	e Output Files	
Files in the Directory Note: Before clicking OK, make	C: Doublectick Desired Directory C:\ Documents and Se SMAPTutor SMAPTATER SMAP 작업 파일 sure that files are shown in your	OK

그림 2. Working Directory.

1.2.3 GEN-3D 실행하기

GEN-3D를 실행시키기 위하여 그림 3과 같이 Run => Presmap => Gen-3D를 선택합니다.

SMAP-3D				
Run P	lot S	etup	Exit	
Smap		•		
Presma	ар	•	Presmap - 2D	
Addrgr	ı	•	Natm - 2D	
Femap)	•	Circle - 2D	
Plotme	sh	•	Presmap - 3D	
Supple	ment	•	Cross - 3D	
Load		- •	Gen - 3D	
User A	pplication	ו → [Presmap - GP	
User A	pplicatior	ı →	Presmap - GP	

그림 3. GEN-3D 프로그램 실행

그러면 그림 4와 같이 GEN-3D와 관련된 Input 및 Output 파일 이름 창이 나타납니다. Input 파일로 이미 준비된 GEN-3D Data 파일 (ZI.dat)과 2D 단면 Mesh 파일 (Ex. 2D_Mesh.dat)을 입력하고 Output 파일 (Ex. ZI.out)을 입력한 다음 OK 버튼을 클릭합니 다.

🔇 Input and Output File Name for GEN-3D	
Input File Name for GEN-3D	
Zl.dat	Browse
Input File Name for 2D Mesh	
2D_Mesh.dat	Browse
Output File Name	
Zl.out	
<u>Q</u> K Cancel	

그림 4. GEN-3D Input 및 Output 파일 입력 창

1.2.4 Mesh Plot 하기

GEN-3D 프로그램이 종료되면 그림 5와 같은 PRESMAP Mesh Plot Option 창이 나타납 니다. "Plot by PLOT_2D.3D" 선택 후 OK 버튼을 클릭하여 Plot-3D 프로그램을 실행합 니다.

그림 5. PRESMAP Mesh Plot Option.

그림 6과 같이 Plot-3D 창이 나타나면 파일 오픈툴바 버튼 🖻을 클릭하여 그림 7의 오픈 파일 입력 창에서 자동 생성된 3D 입체 Mesh 파일 (Ex. ZI.out)을 선택합니다.

	Open	? 🛛
	Look in: 🔁 INPUT 💌 🔍	⊨ 🗈 📸 ⊞-
	Temp 2D_Mesh.dat	
	My Recent Documents ZI.dat	
	Desktop	
	My Computer	
	File name:	▼ <u>O</u> pen
	My Network Files of type: All Files (*.*) Places	Cancel
	☐ Open as <u>r</u> ead-only	
	그림 7. Open 파일 입력 창	ŀ
덤 8은 1 2 5를 착겨	<i>x</i> 국과 <i>y</i> 국으로 외선시킨 3D 유한요소방입니니 주하기 바랍니다	구. Plot-3D의 주요기능은 다음절
1.2.02 8-		
🕓 р	LOT-3D	
Eile V	/ew Model Blot Help - → ↑ ↓ ↓ ± ∞ ∞ ∞	
		Total Dimension
		X - direction Min = -2.983e-005 Max = 32.
		Y - direction
		Min = -30. Max = 21.94
		Z - direction Min = -30.
		Max = 30.
		γ
	View No 2 : C:\SMAP\SMAP3D\EXAMPLE\PRESMAP\GEN-3D\EX1\INPUT\ZI.OU	т
	그림 8. 자동 생성되 3D 유하요	 소망
		- 0

PLOT-3D

1.2.5 PLOT-3D

1.2.5.1 PLOT-3D - View.

PLOT-3D는 Plot Option의 Plot by PLOT_2D.3D. PLOT 보기 사항입니다. 프로그램 실행 후의 2 · 3차원 해석 결과나 Mesh파일을 볼 때 주로 쓰입니다.

그림 9. PLOT-3D.

- General : View Option의 전반적인 사항들을 지정해 주는 기능입니다.
- Screen, Printer : Screen, Printer 설정을 위한 기능입니다.
- Contour
 화면에 출력되는 Mesh/해석결과 내용물의 색을 다르게 설정하 여 보기위한 기능입니다. 직접 색을 선택할 수도 있고, 이미 Set되어 있는 Option을 택하여 볼 수도 있습니다.
- Clip Plane

Plane : 특정 좌표, Node, Element에서의 단면의 형상이나 재료를 확 인하기 위해 쓰이는 기능으로 Mesh가 3차원으로 이루어졌을 때 주로 사용됩니다. 절단면의 형상을 보거나 숨길 수 있으며, 외곽선의 색도 지정할 수 있습니다.

Define Clip Plane		
Specify a Point on Clip Plane Coordinates X- coordinates X- coordinates Y- coordinates Y- coordinates Z- coordinates Z- coordinates R Element No: 1. Face No: I X- Specify a Vector normal to Clip Plane X- component:	Normal Vector	Elements Crossing Clip Plane Outline Color G Green G Grey G Blue G Yellow G Red G Black Sides for Nodal Infomation G Positive G Negative
Y- component : 0. Z- component : 1. Elements in half space on the positive	Apply Clip Plane	Show Crossing Elements
side of the clip plane will be removed.	Cancel	

그림 10. Define Clip Plane.

: Mesh에 대한 전반적인 선택사항으로 원하는 요소종류나 재료 Mesh 번호만을 선택하여 볼 수도 있고, 색 보기 방식도 지정할 수 있습니다.

Mesh Options	×
Element Type Continuum Beam Truss Joint Shell	Material Selection Continuum/Joint/Shell Color All Materials Color Available Selected One Material Color Sequential Color Sequential Repeating Trues Element
Element Range Minimum No. 1. Maximum No. 100000	Boundary Outline Color C Wire Frame Color Finite Element Mesh Available Show Only On Clip Plane Image: Color im

그림 11. Mesh Options.

- Beam, Truss : 도면상의 Beam, Truss 결과를 보기 위한 Option 사항입니다.

• Principal Stress : 연속체 요소나 Shell 요소의 주응력을 확인하는데 있어서 필요 한 사항들을 설정합니다.

Options for Principal Stress Vectors	X
Select Stress Vectors and Colors	Show Min and Max Values
🔽 Major Principal Stress	All Active Elements
Color for Positive Value C Green C Blue • Red C Grey C Black	C All Visible Elements
Color for Negative Value C Green C Blue C Red C Grey C Black	Stress Vector : Arrow Shape
Intermediate Principal Stress Color for Positive Value	Width of Stress Vector
Green C Blue Red C Grey C Black	Single Line
Color for Negative Value	C Double Line
C Green Blue C Red C Grey C Black	C Triple Line
Minor Principal Stress	
Color for Positive Value	Length of Abs. Max. Stress
Green Blue Red Grey Black	
Color for Negative Value C Green I Blue C Red C Grey C Black]1. Cm
Cancel	

그림 12. Options for Principal Stress Vectors.

• Displacement : 변위를 확인하는데 필요한 여러 가지 사항들을 설정합니다.

Displacement View Option	s 🛛 🗙
Total / Relative Displacement Total Displacement Total Displacement Relative to Reference Time Use Deformed Mesh : Plot Menu Continuum Doint Shell Reference Time Selection Available Reference Times	Display Options Undeformed Shape Line Type Image: Solid Line Image: Solid Line Deformed Shape Line Color Grey Displacement Vector Line Width C Single Ouble Triple Quadruple Vector Color C Red Black Image: Solid Line C Single Duble Triple Vector Color C Red Black
Selected ReferenceTime	Scale for Displacement / Velocity / Acceleration
	OK Cancel

그림 13. Displacement View Options.

1.2.5.2 PLOT-3D - Plot.

- Replot : 프로그램 이용 도중 자동으로 Update 되지 않는 그림을 볼 때 이용합니다.
- Mesh : 프로그램 실행 후 원하는 Mesh Type을 선택합니다.

Finite Elements	Time Selection	Mesh Type
 All Elements Active elements at Selected Time 	Available Times	C All Surface C Duter Surface C Visible Surface
	Selected Time	with Material Colo

그림 14. Mesh Plot.

 Continuum, Beam, Truss, Joint, Shell :
 프로그램 실행 후 각 요소들의 특정 시간, 특정 항목에 대한 결과를 확인할 수 있습니다.

Available Times	Plot Item Selection	
	101 Total displacement 102 X-displacement 103 Y-displacement 104 Z-displacement 105 Total velocity 106 X-velocity 107 Y-velocity 108 Z-velocity 109 Total acceleration 110 X-acceleration 111 Y-acceleration 112 Z-acceleration	
Selected Time	Selected Item 101 Total displacement	

그림 15. Contour Plot for Continuum Element.

• Deformed Shape : 프로그램 실행 후 각 요소들의 특정 시간, 특정 항목에 대한 변위를 확인할 수 있습니다.

Deformation Plot								
Time Selection	Displacement Type	Element Type						
Available Times	O Displacement	Continuum Element						
	C Velocity	🔽 Beam Element						
	C Acceleration	✓ Truss Element						
	C Relative Fluid Displacement	🔽 Joint Element						
J Selected Time	C Relative Fluid Velocity	Shell Element						
	C Relative Fluid Acceleration							
	Cancel							

그림 16. Deformation Plot.

VIEW NO T	: Finite Element Meshes before excavation	
View No 2 View No 3 View No 4	: Finite Element Meshes after excavation : Finite Element Meshes before excavation : Einite Element Meshes after excavation	
View No 5	: Sheet Pile : Beam Element No	
Selected Vie	w	

그림 17. Existing Views

1.2.5.3	PLOT-	3D – Toolbar.
1.	←→↓↓	: Plotting된 도면의 방향을 움직여 보기 위한 기능입니다.
2.	± 🔊 Ø Ø	: 도면을 x, y, z축으로 회전시켜 보는 기능으로 ±를 누르면 회 전방향이 반대로 전환됩니다.
3.	<u> </u>	 도면을 확대, 축소해서 보는 기능이며, 선택한 부분만 확대 하 여 볼 수 있습니다.
4.	=	: 이전 PLOT 화면으로 돌아가는 기능입니다.
5.	All	: 완성된 Mesh 전체를 한눈에 볼 수 있는 기능입니다.
6.		: 현재 화면상에 Plotting 된 도면을 Text 파일 PlotView.dat에 저장합니다.
7.	8	: 현재 화면상에 Plotting된 도면을 프린트로 출력합니다.
8.	B	: Open할 Plotting 파일을 찾기 위한 기능입니다.
9.	Ĵ+	 x, y, z 축을 쉽게 보기 위한 좌표축으로 누를 때마다 반시계 방향으로 이동합니다. 이 기능은 화면이 2등분으로 되었을 때만 가능합니다.
10.	No	 한번 누를 때마다 Node Number -> Element Number -> Node & Element Number -> Skeleton Boundary Code -> Fluid Boundary Code -> Rotation Boundary Code -> Slip Boundary Code -> Material Number -> Material & Node Number 순으로 바뀌게 됩니다. 정해진 순서와 상관없이 원하시는 No.를 보고 싶으시면 View -> General View Option -> Number를 선택하여 임의로 지정하시면 됩니다.
11.		: 화면이 3등분으로 되어 우측 창에 세부정보를 보여줍니다.
12.		: 화면이 좁아 도면상에 모두 들어오지 않을 때 화면 우측의 세부정보를 나타내는 창을 숨겨 화면을 2등분하여 넓게 보는 기능입니다.

GEN-3D Users Manual

1.3 GEN-3D 사용자 매뉴얼

Card Group		입력 데이터와 정의
1	^{1.1} TITLE TITLE	제목 (최대 60 글자수까지 허용)
	^{1.2} NBZ, NBNODE, NS	SNODE, NSNEL, IBOUND, IPLANE, ICLOSE, CMFAC
	NBZ NBNODE NSNODE NSNEL	Z 방향으로 생성할 블록의 수 Z 방향으로 생성할 블록 절점의 수 새롭게 시작할 절점번호 새롭게 시작할 요소번호
데이터 _.	IBOUND = 0 = 1 = 2 = 3	경계면을 지정하지 않음(디폴트) 봉 요소로 나타내는 Wire Frame 경계 포함 Shell 요소로 나타내는 평면 경계 포함 Wire Frame과 평면 경계 포함
일반	IPLANE = 0 = 1 = 2 = 3	입력 2D Section을 X-Y 평면에 확장(디폴트) 입력 2D Section을 Z-Y 평면에 확장 입력 2D Section을 Z-X 평면에 확장 입력 2D Section을 임의의 평면에 확장
	ICLOSE = 0 = 1	개방 루프(Loop) 폐쇄 루프(Loop) 처음 Section과 마지막 Section은 동일함.
	CMFAC	2D Section의 좌표 축적비
	1.2.1 (IBOUND > 0인 기 X _{LEFT} , X _{RIGHT} , Y _{BOT}	경우에만 입력) _{TOM} , Y _{TOP} , Z _{BACK} , Z _{FRONT}
	X _{LEFT} , X _{RIGHT} Y _{BOTTOM} , Y _{TOP} Z _{BACK} , Z _{FRONT}	좌, 우 경계면의 X 좌표 아래, 위 경계면의 Y 좌표 뒤, 앞 경계면의 Z 좌표

Card Group	입력 데이터와 정의
L	1.2.2
	(IPLANE = 3인 경우에만 입력)
	X ₀ , Y ₀ , Z ₀ X _a , Y _a , Z _a X _b , Y _b , Z _b
	X ₀ , Y ₀ , Z ₀ 지역 좌표를 지정하기 위한 기준점
	Xa, Ya, Za 지역 X 축을 지정하기 위한 좌표
	X _b , Y _b , Z _b 지역 Y 축을 지정하기 위한 좌표
	1.3
	IBZ _{BASE} , IBZ _{FRONT} , IBZ _{BACK} (그림 18을 참고하십시오)
	IBZ _{BASE} 내부 경계 조건
	IBZ _{FRONT} 앞면의 경계 조건
تت	IBZ _{BACK} 뒷면의 경계 조건
ज़ी 0] 1	IBZ ISZ IFZ
일반	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ISZ 골격의 Z 방향 자유도 IF7 가그스이 고려에 대하 7 바햐 사내 가운도
	IFZ 친구부가 물건에 대한 2 8 8 8 대 사파고 ISZ, IFZ = 0 지정된 방향으로 움직임이 허용됨
	= 1 지정된 방향으로 움직임이 고정됨

Card Group	입력 데이터와 정의
Group 표 전· 눌 클	2.1 NODE ₁ , Z ₁ , X ₁ NODE ₂ , Z ₂ , X ₂ Cards NODE 절점 번호 Z Z 좌표 X X 좌표 참고: Z와 X는 Center Line 좌표입니다.

Card roup	입력 데이터와 정의							
3	^{3.1} BLNAME BLNAME	블록 이름 (최대 60 글자까지 허용)						
	^{3.2} IBLNO IBLNO	블록 번호						
	3.3 I, J, LTYPE, I	MATC, IMATB, IMATT, NIXCH (그림 18을 참고하십시오)						
	I, J LTYPE = 0	블록의 Corner 절점번호 직선						
	= 1 IMATC IMATB IMATT NIXCH	곡선 연속체 요소의 재료번호 증가 보 요소의 재료번호 증가 봉 요소의 재료번호 증가 인덱스 수정이 필요한 연속체 요소 재료수						
이더	3.4							
ति देव	NDZ, α , MC ₁ , M	C_2 , MC_3 , MB , MT						
각 블록에 대한	NDZ $\alpha = 0.5$ = 0.3 = -0.3 MC MB MT	Z 방향으로 생성할 요소의 수 요소길이는 일정 요소길이는 I에서 J로 점차 증가 요소길이는 J에서 I로 점차 증가 수정되지 않을 연속체 요소의 재료번호 수정되지 않을 보 요소의 재료번호 수정되지 않을 봉 요소의 재료번호						
	참고: 만약 이들	MC, MB, MT가 마이너스 기호를 가지고 있다면, 재료번호에 해당하는 요소는 생성되지 않는다.						
	3.5							
	[LTYPE = 1인 건	영우에만 입력 ; 곡선의 경우]						
	$Z_0, X_0, R, \theta_b,$ Z_0, X_0 R	θ _e 원점의 좌표 반지름						
	$ heta_{b}$, $ heta_{e}$	시점과 종점의 각도(°)						

Card Group	입력 데이터와 정의							
3	3.6							
	[NIXCH > 0인 경우에만 입력]							
	NIXCH MAT, NMAT, NI ₁ , NI ₂ , NI ₃ , NI ₄ , NI ₅ , NI ₆ , NI ₇ , NI ₈ Cards							
	MAT 재료 번호 NMAT 새로 사용학 재료 번호							
	NIi Ii 에서의 추가 절점번호 증가수 참고: 인덱스 수정은 각 불록의 첫번째 층에만 적용됨							
1	4.1 LTD AND							
	ITRANB ITRANB = 0 Transmitting 경계를 지정하지 않음 = 1 절점을 기반으로 하는 Transmitting 경계 지정 = 2 요소를 기반으로 하는 Transmitting 경계 지정							
	ITRANB가 0인 경우는 나머지 카드가 사용되지 않습니다. ITRANB가 2인 경우는 Card Group 4.4로 가십시오.							
	4.2 4.2.1 NTNC NTNC 재료의 수							
জ জ্ব সা	4.2.2 NTNC MAT, RHO, CP, CS Cards – – – –							
smitting æ	MAT 재료 번호							
Tran								

Card Group	입력 데이터와 정의							
	^{4.3} <u>절점을 기준으로 하는 Transmitting 경계</u> (이 카드는 반복해서 사용 가능)	<u>생성</u>						
	법선이 x 방향인 평면의 경우,	1 NPT N ₁ , N ₂ ,, N _{NPT}						
	법선이 y 방향인 평면의 경우,	2 NPT N ₁ , N ₂ ,, N _{NPT}						
৪ এম এম ৫৫	법선이 z 방향인 평면의 경우(앞면), 법선이 z 방향인 평면의 경우(뒷면), Transmitting 경계 생성을 끝마칠 경우,	3 4 0						
ansmitti.	NPT 절점의 수 N ₁ , N ₂ ,, N _{NPT} 절점 번호							
Τr	^{4.4} <u>요소를 기준으로 하는 Transmitting 경계</u> (이 카드는 반복해서 사용 가능)	<u>생성</u>						
	법선이 X-Y 평면에 있는 표면의 경우	1 NPT N ₁ , N ₂ ,, N _{NPT}						
	앞면의 경우,	3						
	뒷면의 경우,	4						
	Transmitting 경계 생성을 끝마칠 경우,	0						
	NPT 절점의 수 N ₁ , N ₂ ,, N _{NPT} 절점 번호							

예:

IPLANE = 0 (입력 2D Section을 X-Y 평면에 확장)

블록 번호 1,	I = 1	J = 2	NDZ = 2	$\alpha = 0.3$
블록 번호 2,	I = 2	J = 3	NDZ = 3	$\alpha = 0.3$
블록의 수, 브르 저거이 스	NBZ	= 2		
글즉 실심의 ㅜ,	NUNDE	= 3		

그림 18. GEN-3D의 블록 인덱스

Ex_1 Curved Box

2.1 Ex_1 Curved Box

본 예제는 그림 1에서 보는 바와 같은 Curved Box의 3차원 유한요소망을 GEN-3D의 가장 기본적인 기능을 사용하여 자동 생성하는 예제입니다.

Box는 구형단면으로 4개의 직사각형 요소로 구성되어 있으며, 이에 관한 Data는 2차원 대표단면 Mesh File인 2D_Mesh.dat에 있습니다. (그림 2 참조)

Box는 길이 방향으로 2개의 Block으로 구성되어 있으며, 첫 번째 Block은 22.5°까지 Curve로 되어있고, 두 번째 Block은 길이 39.36의 직선으로 되어 있습니다. (그림 3 참조)

그림 1. Curved Box 개략도

그림 2. 2차원 대표단면 유한요소망 (2D_Mesh.dat)

그림 3. Box 길이방향 z - x 단면 개략도

2.1.1 2D Mesh 파일 작성하기

일반적으로 2차원 대표단면 Mesh는 AIG를 사용한 ADDRGN-2D 프로그램이나 기타 PRESMAP 프로그램 (PRESMAP-2D, PRESMAP-GP, NATM-2D, CIRCLE-2D 등)을 실행시켜 생성합니다. 하지만 본 Box 예제는 그림 2에서와 같이 4개의 직사각형요소로 구성되어 있어 위에 열거한 2차원 전처리 프로그램을 사용하지 않고 손으로도 쉽게 작성할 수 있습니다.

2D Mesh 파일 작성에 관한 자세한 설명은 SMAP-2D 사용자 매뉴얼 (Mesh 파일 작성)과 다음 페이지 2D Mesh 파일 Listing의 주석을 참조하기 바랍니다.

2.1.1.1	21) Me	sh 파	일 L	istin	g (2I	D_Mesl	n.dat)		
TYPIC NUMNI 9	CAL 2D P NCC 2	SECTI ONT	ION NBEAM 0	NTF 0	RUSS					
=> 절 의 있	점의 기 개수(1 습니다.]수 (NU NTRUSS	MNP)외 5)를 입	- 연속 력합니	체요소 다. 년	의 개イ 본 예제 [:]	^는 (NCONI 는 9개의	'), Beam요소 절점과 4개9	느의 개수(NBEAM) 리 연속체 요소로	, Truss요소 이루어져
NODAI	L COOR	וידאאדת	ES							
NODE	ISX	ISY	IFX	IFY	IRZ	IEX	IEY	XC	YC	
1	1	0	1	1	1	1	1	11.3	7.0	
2	0	0	1	1	1	1	1	16.3	7.0	
3	1	0	1	1	1	1	1	21.3	7.0	
4	1	0	1	1	1	1	1	11.3	3.5	
5	0	0	1	1	1	1	1	16.3	3.5	
6	1	0	1	1	1	1	1	21.3	3.5	
7	1	0	1	1	1	1	1	11.3	0.0	
8	0	0	1	1	1	1	1	16.3	0.0	
9	1	1	1	1	1	1	1	21.3	0.0	
드가 GE 각 ISX ISY	절점의 : 골격 : 골격	비 지 에 가 번 호 오 의 X 방 의 Y 방	Ⅰ 경계 량 자유 향 자유	국건, -도 -도	정확한	좌표 :	지 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	취합니다. [↑]		
IFX IFY	: 간극 : 간극	수의 골 수의 골	실격에 대 실격에 대	대한 X 대한 Y	방향 ス 방향 ス	┝유도 ▶유도				
IRZ	: Z축º	네 대한	회전 기	자유도				↑ YA	Node ISX IFX	
IEX	: Slip	o의 X병	ነ향 자 '	유도				0,0		
IEY	: Slip	o의 Y변	ነ향 자₁	유도				k	XA	~
ISX,	, ISY,	IFX,	IFY,	IRZ,	IEX,	IEY = =	0 : 지 1 : 지	정된 방향으로 정된 방향으로	.의 움직임이 허용 .의 움직임이 고정	·됨. (됨.
=> SN	MAP-2D	User	's Man	ual.	Mesh	File -	- Card (Group 2.2	참고	

IΕL	Ι1	I2	IЗ	I4	M5	MG	Μ7	M8	MATC	KS	KF	INTR	INTS	TBJWL
1	2	1	4	5	0	0	0	0	1	0	1	2	2	0.0
2	3	2	5	6	0	0	0	0	1	0	1	2	2	0.0
3	5	4	7	8	0	0	0	0	1	0	1	2	2	0.0
4	6	5	8	9	0	0	0	0	1	0	1	2	2	0.0
									<u>አለ</u> መረ	7	_	٦Ì	근비方	
				e l					MAIC	~	-	~r	표민오	•
				- -	Node				KS		= -	·1 폭	약을 포	트함하는 요소.
		л		IM1	↓ _∓						=	0 골	격을 포	프함하는 요소.
		Ĩ	(e							= 1	~4 젙	리를 3	포함하는 요소.
			x ² :	, 4 x [€]					K E		_	o 7Ì	그스르	고하키는 거이
Ť		м2 Ф	_ (¦ 0- — —	M4	- – → r			κr		_	0 신 1 긴	· ㄱ ㅜ ㄹ · 극 수 륵	포함아는 경구. 포한하지 않는 경우
	Flores			3	5 Ĭ								5	20416201
	Center		x' ;	х х	·+	Integratio Point	n		INTH	R	=	R	방향 적	분점 수. (초기값=2)
		кф		о мз					INTS	5	=	S	방향 적	분점 수. (초기값=2)
									TBJI	VL	=	K	5=-1일	때 사용하는 변수를
				\longrightarrow	x) , , , , , , , , , , , , , , , , , , ,

=> SMAP-2D User's Manual. Mesh File - Card Group 3.2 참고

2.1.2 3D로 확장하기 위한 ZI.dat 파일 작성하기

ZI.dat 파일은 2차원 대표단면 Mesh를 단면에 수직한 방향으로 확장시켜 3차원 입체 유한요소망을 생성하는데 필요한 GEN-3D Data 파일로 Word Pad나 Note Pad와 같은 Text 편집기를 사용하여 작성합니다.

본 예제는 그림 3에서 보는 바와 같이 Box의 길이 방향으로 곡선과 직선의 2개의 Block으로 구성되어 있고, 첫 번째 곡선 Block은 등 간격으로 4등분 되어있고, 두 번째 직선 Block은 요소의 길이가 뒷면으로 갈수록 점차 증가하여 나눠집니다.

표 1은 Block 길이 방향의 Center Line 좌표입니다. ZI.dat 파일 작성에 관한 자세한 설명은 1.3절의 GEN-3D 사용자 매뉴얼과 다음 페이지 ZI.dat 파일 Listing의 주석을 참조하기 바랍니다.

Block		LTYPE=	0 (직선)	LTYPE=1 (곡선)						
No.	LTYPE	<i>z</i> _i	x_i	z_0	x_0	R	θ_{h}	θ_{e}		
		z_{j}	x_{j}	0			U	L.		
1	1			0.0	0.0	16.3	0.0	22.5		
0	0	-6.238	15.06							
		-42.60	0.0							

표 1. Block 길이 방향 Center Line 좌표.

* TIT 3-D M	D 1.1 LE ESH GENERAT	ION BY GEN-3D	
=> 제·	목을 입력하는	Card로 최대 60 Character	r 영문으로만 입력 가능합니다.
* CAR * NBZ 2	D 1.2 NBNODE 3		
=> Z [] [] []	방향으로 생성 ·다 LTYPE과 2 정됩니다.	활 Block의 개수(NBZ)와 절 2방향으로 생성될 요소의 수,	점의 개수(NBNODE)를 입력합니다. 각 Block , 그 간격 등의 세부사항은 Card 3에서
* CAR * IBZ 1	D 1.3 _base IBZ_f _3	ront IBZ_back 3	
=> 각 (I	각 내부를 구성 BZ_front), [:]	하는 요소의 경계조건(IBZ_) 뒷면을 구성하는 요소의 경계	base), 앞면을 구성하는 요소의 경계조건 조건(IBZ_back)을 나타냅니다.
IBZ	ISZ IFZ	ISZ :	골격의 Z방향 자유도
0	0 0	IFZ :	간극수의 골격에 대한 Z방향 상대 자유도.
1	0 1		· · · 기거디 바차 · ㅋ · 기이시 키유디
2	L U 1 1	ISZ, IFZ ISZ, IFZ	. = 0 : 지정된 방향으로 움직임이 고정됨.
+ 035	D 0 1		
* CAR	D 2.1 E Zp	Хp	3
* CAR * NOD 1	D 2.1 E Zp	Xp 16.30	3
* CAR * NOD 1 2	D 2.1 E Zp 0.0 -6.238	Xp 16.30 15.06	3
* CAR * NOD 1 2 3	D 2.1 E Zp 0.0 -6.238 -42.60	Xp 16.30 15.06 0.00	3
* CAR * NOD 1 2 3 => Ce 나타 Me: 입기	D 2.1 E Zp 0.0 -6.238 -42.60 nter Line의 타냅니다. Cen sh가 Center 에 Mesh를 형성	Xp 16.30 15.06 0.00 절점의 번호와 그 좌표를 nter Line을 입력하면 2D Line을 따라 확장되어 3D 당합니다.	

* CARD 3.1	
* BLNAME	
BLOCK1	
=> Block의 이름을 가능합니다.	입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력
* CARD 3.2	
* IBLNO 1	
1	
=> Block의 번호를	입력합니다.
* CARD 3.3 * T ,T T.TVDF	
1 2 1	
=> 해당 Block을 구 1인 경우는 곡선 입력합니다.	성하는 시작하는 절점번호(I)와 끝나는 절점번호(J)를 입력합니다. LTYPE 을 따라 요소가 생성됨을 나타냅니다. 곡선이 형성되는 각도는 Card 3.5에
* CARD 3.4	=> NDZ : Z방향으로 생성할 요소의 수를 입력합니다.
* NDZ, ALPA	α = 0.5 : 요소의 길이를 일정하게 나눕니다.
4 0.5	= 0.3 : 효소의 실이가 실점 1에서 J도 실구속 점차 등 하며 나눠집니다.
	= -0.3 : 요소의 길이가 절점 J에서 I로 갈수록 점차 증 하며 나눠집니다.
* CARD 3.5	
* Zo Xo R 0.0 0.0 16.3	Tb Te 3 0.0 22.5
=> Zo, Xo는 원점의 나타냅니다.	좌표를 나타내고 R은 반지름, Tb, Te는 곡선의 시작점과 종점의 각도를

```
* _____
* CARD 3.1
* BLNAME
BLOCK2
= Block의 이름을 입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력
가능합니다.
* CARD 3.2
* IBLNO
2
=>Block의 번호를 입력합니다.
* CARD 3.3
* I J LTYPE
   3 0
2
=> 해당 Block을 구성하는 시작점과 끝나는 절점번호를 입력합니다. LTYPE이 0인 경우는 직선
  을 따라 요소가 생성됨을 나타냅니다.
* CARD 3.4
              => NDZ : Z방향으로 생성할 요소의 수를 입력합니다.
* NDZ ALPA
                α = 0.5 : 요소의 길이를 일정하게 나눕니다.
                  = 0.3 : 요소의 길이가 절점 I에서 J로 갈수록 점차 증가
     0.3
 8
                        하며 나눠집니다.
                  = -0.3 : 요소의 길이가 절점 J에서 I로 갈수록 점차 증가
                        하며 나눠집니다.
* _____
* CARD 4.1
* ITRANB
 0
=> ITBANB = 0 Transmitting 경계를 지정하지 않습니다.
       = 1 절점을 기반으로 하는 Transmitting 경계를 지정합니다.
       = 2 요소를 기반으로 하는 Transmitting 경계를 지정합니다.
 ITBANB가 0인 경우 나머지 Card가 이용되지 않습니다.
* END OF DATA
*_____
 만들어진 data파일을 지정된 폴더에 저장합니다.
```
2.1.3 GEN-3D 실행하기

GEN-3D를 실행시키기 위하여 그림 4과 같이 *Run => Presmap => Gen-3D*를 선택합니 다.

SMAP-3D		
Run Plot S	etup	Exit
Smap	- F.	
Presmap	•	Presmap - 2D
Addrgn	•	Natm - 2D
Femap	•	Circle - 2D
Plotmesh	•	Presmap - 3D
Supplement	•	Cross - 3D
Load	► • •	Gen - 3D
User Application	ו ו	Presmap - GP

그림 4. GEN-3D 프로그램 실행

그러면 그림 5와 같이 GEN-3D와 관련된 Input 및 Output 파일 이름 창이 나타납니다. Input 파일로 이미 준비된 GEN-3D Data 파일 (ZI.dat)과 2D 단면 Mesh 파일 (2D_Mesh.dat)을 입력하고 Output 파일 (ZI.out)을 입력한 다음 OK 버튼을 클릭합니다.

S Input and Output File Name for GEN-3D	X
Input File Name for GEN-3D	
Zl.dat	Browse
Input File Name for 2D Mesh	
2D_Mesh.dat	Browse
Output File Name	
Zl.out	
<u> </u>	

그림 5. GEN-3D Input 및 Output 파일 입력 창

2.1.4 생성된 3D Mesh Plot 하기

GEN-3D 프로그램이 종료되면 그림 6과 같은 PRESMAP Mesh Plot Option 창이 나타납 니다. "Plot by PLOT_2D.3D" 선택 후 OK 버튼을 클릭하여 Plot-3D 프로그램을 실행합 니다.

그림 6. PRESMAP Mesh Plot Option.

그림 7과 같이 Plot-3D 창이 나타나면 파일 오픈툴바 버튼 ☞을 클릭하여 그림 8의 오픈 파일 입력 창에서 자동 생성된 3D 입체 Mesh 파일 (ZI.out)을 선택합니다.

File View Model Plot Help			
			P No Image: Constraint of the second
			y x
	그림 7. PI	.ot-3D 찫	

	Open			? 🗙	
	Look in: 🗀 INF	TUT	* <u>*</u> = +	Ⅲ ▼	
	My Recent Documents Desktop	o Yesh.dat at UT			
	My Documents My Computer My Network Places	e: All Files (*.*)	• •	<u>O</u> pen Cancel	
l					
		그림 8. Open 파일	입력 창		
그림 9는 <i>x</i> 록 을 참조하기 1	축과 y축으로 회> 바랍니다.	전시킨 3D 유한요소망	입니다. Plot	-3D의 주요기	능은 1.2.5절
1	PLOT-3D				
	Eile View Model Plot Help ← → ↑ ↓ ± ⊗ û	00 • • • • • • •	ŝ ≯ No □ □		
				Total Dimension X - direction Min = -4.619 Max = 21.3 Y - direction Min = 0. Max = 7. Z - direction Min = -44.51 Max = 0.	
	View No 1: 3	3D Finite Element Mesh For Curved Box		ү х	
Ľ		그림 9. 자동 생성된 3D	유한요소망		

2.1.5 생성된 3D Mesh 파일 보기

GEN-3D 프로그램 실행 후 생성된 ZI.out (디폴트 output 파일 이름) 파일은 SMAP-3D 프로그램의 Input File 중의 하나인 Mesh File과 동일한 포맷으로 되어 있어 파일이름만 변경하여 Mesh File로 사용됩니다.

ZI.out 파일은 해석할 구조물을 나타내는 유한요소망의 좌표, 재료번호 등을 포함하고 있습니다. 자세한 설명은 SMAP-3D 사용자 매뉴얼의 Mesh File을 참고하기 바랍니다.

NUMNP	NCO	ONT	NBEA	M	NTR	USS															
117	4	48	0)	(0															
NODAL	1	BOUNI	ARY C	CONDI	TIO	NS	&			C00	RD I NA'	TES									
NODE	ISX	ISY	ISZ	IFX	K I	FY	IFZ	IRX	IRY	IRZ	IEX	IEY	IEZ		XC			YC		ZC	
1	1	C) 1		1	1	1	1	1	1	1	1	1		11300	0E+02		.70000	0E+01	.000000E+0	0
2	0	C) 1		1	1	1	1	1	1	1	1	1		16300	0E+02		.70000	0E+01	.000000E+0	0
3	1	C) 1		1	1	1	1	1	1	1	1	1	. 4	21300	0E+02		.70000	0E+01	.000000E+0	0
4	1	C) 1		1	1	1	1	1	1	1	1	1		11300	0E+02		. 35000	0E+01	.000000E+0	0
5	0	C) 1		1	1	1	1	1	1	1	1	1		16300	0E+02		. 35000	0E+01	.000000E+0	0
6	1	C) 1		1	1	1	1	1	1	1	1	1	. 4	21300	0E+02		. 35000	0E+01	.000000E+0	0
7	1	C) 1		1	1	1	1	1	1	1	1	1		11300	0E+02		.00000	0E+00	.000000E+0	0
8	0	C) 1		1	1	1	1	1	1	1	1	1	•	16300	0E+02		.00000	0E+00	.000000E+0	0
9	1	1	. 1		1	1	1	1	1	1	1	1	1	. 4	21300	0E+02		.00000	0E+00	.000000E+0	0
10	1	C	0 0)	1	1	1	1	1	1	1	1	1	•	11245	6E+02		.70000	0E+01	110760E+0	1
11	0	C	0 0)	1	1	1	1	1	1	1	1	1	•	16221	5E+02		.70000	0E+01	159768E+0	1
12	1	C	0 0)	1	1	1	1	1	1	1	1	1		21197	4E+02		.70000	0E+01	208777E+0	1
13	1	C	0 0)	1	1	1	1	1	1	1	1	1	•	11245	6E+02		.35000	0E+01	110760E+0	1
14	0	C	0 0)	1	1	1	1	1	1	1	1	1		16221	5E+02		. 35000	0E+01	159768E+0	1
15	1	C	0 0)	1	1	1	1	1	1	1	1	1		21197	'4E+02		.35000	0E+01	208777E+0	1
-																					
-																					
-																					
102	1	C	0 0)	1	1	1	1	1	1	1	1	1	. '	78197	'2E+01		. 70000	0E+01	367863E+0	2
103	1	C	0 0)	1	1	1	1	1	1	1	1	1		14192	2E+01		. 35000	0E+01	329598E+0	2
104	0	C	0 0)	1	1	1	1	1	1	1	1	1		32002	25E+01		. 35000	0E+01	348731E+0	2
105	1	C	0 0)	1	1	1	1	1	1	1	1	1		78197	'2E+01		. 35000	0E+01	367863E+0	2
106	1	C	0 0)	1	1	1	1	1	1	1	1	1		14192	2E+01		.00000	0E+00	329598E+0	2
107	0	C	0 0)	1	1	1	1	1	1	1	1	1		32002	25E+01		.00000	0E+00	348731E+0	2
108	1	1	. 0)	1	1	1	1	1	1	1	1	1	. '	78197	'2E+01		.00000	0E+00	367863E+0	2
109	1	C) 1		1	1	1	1	1	1	1	1	1	<i>.</i>	46194	7E+01		.70000	0E+01	406868E+0	2
110	0	C) 1		1	1	1	1	1	1	1	1	1	.(00000	00E+00		. 70000	0E+01	426000E+0	2
111	1	C) 1		1	1	1	1	1	1	1	1	1	• 4	46194	7E+01		. 70000	0E+01	445132E+0	2
112	1	C) 1		1	1	1	1	1	1	1	1	1	4	46194	7E+01		. 35000	0E+01	406868E+0	2
113	0	C) 1		1	1	1	1	1	1	1	1	1	.(00000	00E+00		. 35000	0E+01	426000E+0	2
114	1	C) 1		1	1	1	1	1	1	1	1	1	• 4	46194	7E+01		. 35000	0E+01	445132E+0	2
115	1	C) 1		1	1	1	1	1	1	1	1	1	<i>.</i>	46194	7E+01		.00000	0E+00	406868E+0	2
116	0	C) 1		1	1	1	1	1	1	1	1	1	.(00000	00E+00		. 00000	0E+00	426000E+0	2
117	1]	. 1		1	1	1	1	1	1	1	1	1	• 4	46194	7E+01		.00000	0E+00	445132E+0	2
			ELEME	NT I	NDE.	Х															
NEL		I1	12		13		I4	15	1	.6	17	18	3 MAI	CK	S KF	INTR	INT	S INTT	TBJ	WL	
1		2	1		4		5	11	1	.0	13	14	1	. 0	1	2	2	2	.0000	E+00	
2		3	2		5		6	12	1	.1	14	15) 1 -	. 0	1	2	2	2	.0000	E+00	
3		5	4		7		8	14]	.3	16	17	1	. 0	1	2	2	2	.0000	E+00	
4		6	5		8		9	15]	.4	17	18	5 1	. 0	1	2	2	2	.0000	E+00	
5		11	10		13		14	20]	.9	22	23	5]	0	1	2	2	2	.0000	12+00	
6		12	11		14		15	21	2	.U	23	24	+ 1 , -	. 0	1	2	2	2	.0000	NE+00	
7		14	13		16		17	23	2	:2	25	26)] 	. 0	1	2	2	2	.0000	NE+00	
8		15	14		17		18	24	2	:3	26	27	1	. 0	1	2	2	2	.0000	E+00	
9	2	20	19		22		23 04	29	2	:ð	31 00	32	; 1 , -	. 0	1	2	2	2	.0000	NE+00	
10	1	21	20		23		24 06	30	2	9 1	32	33	s 1 	. 0	1	2	2	2	.0000	NE+00	
11	4	23	22		25		26	32	ć	51	34	35) 1	0	1	2	2	2	.0000	12+00	
-																					
-																					
-		70			0.0		0.1	05			00	~	· -	~	-	0	~	~	0000	E 100	
36		18	77		80		81	87	8	50	89	90	ı 1	0	Ţ	2	2	2	.0000	E+00	

38	84	83	86	87	93	92	95	96	1	0	1	2	2	2	.0000E+00
39	86	85	88	89	95	94	97	98	1	0	1	2	2	2	.0000E+00
40	87	86	89	90	96	95	98	99	1	0	1	2	2	2	.0000E+00
41	92	91	94	95	101	100	103	104	1	0	1	2	2	2	.0000E+00
42	93	92	95	96	102	101	104	105	1	0	1	2	2	2	.0000E+00
43	95	94	97	98	104	103	106	107	1	0	1	2	2	2	.0000E+00
44	96	95	98	99	105	104	107	108	1	0	1	2	2	2	.0000E+00
45	101	100	103	104	110	109	112	113	1	0	1	2	2	2	.0000E+00
46	102	101	104	105	111	110	113	114	1	0	1	2	2	2	.0000E+00
47	104	103	106	107	113	112	115	116	1	0	1	2	2	2	.0000E+00
48	105	104	107	108	114	113	116	117	1	0	1	2	2	2	.0000E+00
	0														

* CARD 9.6.1

* NODVIS NELVIS 0 0

Ex_2 NATM Tunnel

2.2 Ex_2 NATM Tunnel

본 예제는 그림 1에서 보는 바와 같은 NATM 터널의 3차원 유한요소망을 GEN-3D의 가장 기본적인 기능을 사용하여 자동 생성하는 예제입니다.

본 예제의 2차원 대표단면 Mesh File인 2D_Mesh.dat는 AIG를 사용하여 작성되었으며 자세한 Mesh 작성과정은 "AIG Mesh Guide 2007"의 EX_2 NATM 터널을 참고하기 바랍니다. 그림 2a는 2차원 대표단면 유한요소망입니다. 그림 2b는 터널 주변의 유한요소망입니다.

NATM 터널은 길이 방향으로 1개의 Block으로 구성되어 있으며, 요소와 길이는 터널 Center Line에 따라 뒷면으로 갈수록 점차 증가하여 나눠집니다. (그림 3 참조)

그림 1. GEN-3D로 생성할 3D NATM 터널 Mesh

2.2.1 2D Mesh 파일 작성하기

본 예제의 2차원 대표단면 Mesh File인 2D_Mesh.dat는 AIG를 사용하여 작성되었습니다. 자세한 Mesh 작성 과정은 "AIG Mesh Guide 2007"의 EX_2 NATM 터널에 설명 되어 있습니다.

2D Mesh 파일 Input Data에 관한 자세한 설명은 SMAP-2D 사용자 매뉴얼 (Mesh 파일 작성)과 다음 페이지 2D Mesh 파일 Listing의 주석을 참조하기 바랍니다.

2.2.1.1 2D Mesh 파일 Listing (2D_Mesh.dat) TYPICAL 2D SECTION NUMNP NCONT NBEAM NTRUSS

4269 4154 102 60

=> 절점의 개수(NUMNP)와 연속체요소의 개수(NCONT), Beam요소의 개수(NBEAM), Truss요소 의 개수(NTRUSS)를 입력합니다. 본 예제는 4269개의 절점과 4154개의 연속체 요소, 102개 의 보 요소, 60개의 봉 요소로 이루어져 있습니다.

NODE ISX ISY IFX IFY IRZ IEX IEY XC YC 1 1 0 1 1 1 1 000000E+00 .214400E+02 2 1 0 1 1 1 .000000E+00 .209400E+02 2 1 0 1 1 1 .000000E+00 .209400E+02	
1 1 0 1 1 1 1 1 .000000E+00 .214400E+02 2 1 0 1 1 1 1 1 .000000E+00 .209400E+02	
2 1 0 1 1 1 1 1 .000000E+00 .209400E+02	
3 I U I I I I I .UUUUUUE+UU .2U44UUE+U2	
4 1 0 1 1 1 1 1 .000000E+00 .199400E+02	
5 1 0 1 1 1 1 1.000000E+00 .194400E+02	
6 1 0 1 1 1 1 1 .000000E+00 .189400E+02	
7 1 0 1 1 1 1 .00000E+00 .184400E+02	
8 1 0 1 1 1 1 1.000000E+00 .179400E+02	
-	
-	
-	
4262 0 0 1 1 0 1 1 .260167E+02283347E+01	
4263 0 0 1 1 0 1 1 .265147E+02291271E+01	
4264 0 0 1 1 0 1 1 .270126E+02298126E+01	
4265 0 0 1 1 0 1 1 .275105E+02303921E+01	
4266 0 0 1 1 0 1 1 .280084E+02308619E+01	
4267 0 0 1 1 0 1 1 .285063E+02312273E+01	
4268 0 0 1 1 0 1 1 .290042E+02314886E+01	
4269 0 0 1 1 0 1 1 .295021E+02316461E+01	
=> GEN-3D에 의해서 확장되는 것은 z축으로의 확장입니다. 그러므로 2차원 평면을 이루고 있는 각 절점의 번호와 경계조건, 정확한 좌표 값을 입력합니다. ISX : 골격의 X방향 자유도 ISY : 골격의 Y방향 자유도 IFX : 간극수의 골격에 대한 X방향 자유도 IFZ : 간극수의 골격에 대한 Y방향 자유도 IRZ : Z축에 대한 회전 자유도 IEX : Slip의 X방향 자유도 IEY : Slip의 Y방향 자유도	
ISX, ISY, IFX, IFY, IRZ, IEX, IEY = 0 : 지정된 방향으로의 움직임이 허용됨. = 1 : 지정된 방향으로의 움직임이 고정됨. => SMAP-2D User's Manual. Mesh File - Card Group 2.2 참고	

ELEME NEL 1 2	NT INDE I1 70 71	X I2 1 2	I3 2 3	I4 71 72	M5 0	M6 0	M7 0	M8 1 0 0	MATC 1	KS I O	F II 1 1	NTR 2 2	INTS 2 2	TBJWL .0000E+00 .0000F+00
2 3 4 5 6	72 73 74	2 3 4 5 6	4 5 6 7	73 74 75	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	0 0 0	1 1 1 1	2 2 2 2	2 2 2 2	.0000E+00 .0000E+00 .0000E+00
7 8 9 10	75 76 77 78 79 80	7 8 9 10	8 9 10 11	70 77 78 79 80 81	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 2 2 2	0 0 0 0 0	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2 2	.0000E+00 .0000E+00 .0000E+00 .0000E+00
12 - -	81	12	13	82	0	0	0	0	2	0	1	2	2	.0000E+00
4144 4145 4146 4147 4148 4149 4150 4151	1428 1498 1499 1568 1637 1706 1775 1844	1498 1499 1568 1637 1706 1775 1844 1913	4260 4261 4262 4263 4264 4265 4266 4267	4259 4260 4261 4262 4263 4264 4265 4266	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2	.0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00
4152	1013	1082	4268	4267	0	0	0	0	7	1	1	2	2	.0000E+00
4153 4154	1913 1982 2051	2051 2120	4269 4210	4268 4269	0 0	0	0 0	0 0	7 7	1 1	1 1	2 2	$\frac{1}{2}$.0000E+00 .0000E+00
4153 4154 => 2 M	1913 1982 2051 각 요소 18)를 1	1982 2051 2120 의 번호 나타낸	4269 4210 (NEL) 것으로	4268 4269 와 요소 시계 박	0 0 2를 구성 반대방향	0 0 성하는 5으로 9	0 0 인덱스 입력합1	0 0 (I1, 니다.	7 7 12,	1 1 I3	1 1 , I	2 2 4,	2 2 M5,	.0000E+00 .0000E+00 M6, M7,
+153 4153 4154 => Z M	1982 2051 각 요소 18)를 1	1982 2051 2120 의 번호 나타낸	4269 4210 - (NEL) 것으로	4268 4269 와 요소 시계 또	0 0 오를 구성 반대방향	0 0 8 하는 5으로 9	0 0 인텍스 입력합1 	0 0 (I1, 니다. ATC	7 7 I2,	1 1 I3	1 1 , I 재	2 2 4, 료번	2 2 M5,	.0000E+00 .0000E+00 M6, M7,
=> Z M	1982 2051 우요소 18)를 1	1982 2051 2120 의 번호 나타낸	4269 4210 ↓ 4210 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	4268 4269 와 요소 시계 택	0 0 2 만대방향 de	0 0 5 하는 5 으로 0	0 0 입력합u ¹	0 0 (II, 니다. MATC KS	7 7 I2, = = =	1 1 I3 -1 0 1~4	11 I I 재 폭골절	2 2 2 4, 료 약 을 을 들	2 2 M5, 三 王育 王子	.0000E+00 .0000E+00 M6, M7, 함하는 요소. 함하는 요소. 함하는 요소.
4153 4154 => ^Z M	1982 2051 각 요소 18)를 1	1982 2051 2120 의 번호 나타낸	4269 4210 것으로 * - - - - - - - - -	4268 4269 와 요소 시계 ਞ 	0 0 2를 구성 반대방향 de [14→ r	0 0 5 아는 5 으로 9	0 0 입력합니 F	0 0 (I1, ー다. MATC KS	7 7 12, = = = = =	1 1 I3 -1 0 1~4 0 1	11 I 재 폭골절 간간	2 2 4, 료 약 격 리 국 국	2 2 M5, • · · · · · · · · · · · · · · · · · · ·	.0000E+00 .0000E+00 M6, M7, 함하는 요소. 함하는 요소. 함하는 요소. 포함하는 경우. 포함하지 않는 경의
4153 4154 => ² M	1982 2051 각 요소 18)를 1 18)를 1 K Element	1982 2051 2120 의 번호 나타낸	4269 4210 전으로 S + - - - - - - - - - - - - - - - - - -	4268 4269 외요소 시계 5 × ⁶ 0 ⁻ x ⁶	0 0 0 반대방향 de [→r Point	0 0 8 하는 9으로 9	0 0 입력합니 F F	0 0 (II, J-T MATC KS KF	7 7 12, = = = = = =	1 1 1 1 1 1 1 1 4 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 4, 료 약격림 극극 방장	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.0000E+00 .0000E+00 M6, M7, 함하는 요소. 함하는 요소. 함하는 요소. 포함하는 경우. 포함하는 경우. 포함하지 않는 경의 ·점 수. (초기값=
4153 4154 => ^Z M	1982 2051 각 요소 18)를 1 Element Center	1982 2051 2120 의 번호 가타낸	4269 4210 전으로 ···································	4268 4269 와 요.소 시계 ৼ × ⁶ 0 ⁻ x ⁶ x ⁶	0 0 2를 구성 반대방향 de c Integratio Point	0 0 3 하는 5 으로 9	0 0 입력합니 F 1 1 1 1	0 0 (I1, イ다. AATC (S (F ENTR ENTR ENTR ENTR ENTR	7 7 12,	1 1 I3 -1 0 1~4 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 4, 번 을을 두 수 향향 1	2 2 M5, 호 포포포 를 프 전 적 일 가	.0000E+00 .0000E+00 M6, M7, 참하는 요소. 참하는 요소. 참하는 요소. 포함하는 요소. 포함하지 않는 경의 ·점 수. (초기값= ·점 수. (초기값= 대 사용하는 변수 폭발한 시간.

- 42 -

BEAM NEL 4155 4156 4157 4158 4159 4160 4161 4162 -	ELEMENT I 4210 4269 4268 4267 4266 4265 4264 4263	T J 4269 4268 4267 4266 4265 4264 4263 4262	MSEC 2 2 2 2 2 2 2 2 2 2 2 2	NODEK 1 1 1 1 1 1 1 1 1		NEL I, J MSEC NODEK	: 보 요소 번호 : 보 요소 끝점의 절점 번호 : 보 단면 번호 : Reference 절점 번호
- 4249 4250 4251 4252 4253 4253 4254 4255 4256	2802 1499 1498 1428 1427 1426 1425 1424	2803 1498 1428 1427 1426 1425 1424 1423	1 1 1 1 1 1	1 1 1 1 1 1 1			
TRUS NEL 4257 4258 4259 4260 4261 4262 4263 4264 - -	S ELEM I 2801 2869 2938 3007 3076 3144 2730 2798	ENT J 2869 2938 3007 3076 3144 3213 2798 2867	MATT 1 1 1 1 1 1 1 1	NODEK 1 1 1 1 1 1 1 1 1	\longrightarrow	NEL I, J MATT NODEK	: 봉 요소 번호 : 봉 요소 끝점의 절점 번호 : 재료 번호 : Reference 절점 번호
- 4307 4308 4309 4310 4311 4312	1418 1349 1279 1209 1421 1351 1282 1213	1349 1279 1209 1140 1351 1282 1213 1144 1074	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1			

2.2.2 3D로 확장하기 위한 ZI.dat 파일 작성하기

ZI.dat 파일은 2차원 대표단면 Mesh를 단면에 수직한 방향으로 확장시켜 3차원 입체 유한요소망을 생성하는데 필요한 GEN-3D Data 파일로 Word Pad나 Note Pad와 같은 Text 편집기를 사용하여 작성합니다.

본 예제는 그림 3에서 보는 바와 같이 터널의 길이 방향으로 1개의 직선 Block으로 구성되어 있고, 요소의 길이는 뒷면으로 갈수록 점차 증가하여 나눠집니다.

ZI.dat 파일 작성에 관한 자세한 설명은 1.3절의 GEN-3D 사용자 매뉴얼과 다음 페이지 ZI.dat 파일 Listing의 주석을 참조하기 바랍니다.

.2.2.1	Zl.dat 파일 Listi	ing
* CARD 1	.1	
* TITLE	TUNNEL CENERATION	RY CFN-3D
5 D NAIL	TOWNED GENERATION	
=> 제목을	입력하는 Card로 최대	60 Character 영문으로만 입력 가능합니다.
* CARD 1	.2	
* NBZ N	BNODE	
1	2	
=> Z 방향 마다 지정됩	으로 생성할 Block의 기 ITYPE과 Z방향으로 생 니다.	개수(NBZ)와 절점의 개수(NBNODE)를 입력합니다. 각 Bloc) 성될 요소의 수, 그 간격 등의 세부사항은 Card 3에서
* CARD 1 * IBZ_ba 1	.3 se IBZ_front IBZ_ba 3 3	ack
=> 각각 ı (IBZ_	H부를 구성하는 요소의 front), 뒷면을 구성히	경계조건(IBZ_base), 앞면을 구성하는 요소의 경계조건 하는 요소의 경계조건(IBZ_back)을 나타냅니다.
IBZ IS	Z IFZ	ISZ : 골격의 Z방향 자유도
0 0	0	IFZ : 간극수의 골격에 대한 Z방향 상대 자유도.
1 0 2 1	1	ISZ, IFZ = 0 : 지정된 방향으로 움직임이 허용됨.
3 1	1	ISZ, IFZ = 1 : 지정된 방향으로 움직임이 고정됨.
* CARD 2	.1	
* NODE	Zp Xp	
1	30 0	
2	-30 0	
=> Cente 나타냅 Mesh ⁷ 입체 M	r Line의 절점의 번호의 니다. Center Line을 ·Center Line을 따라 esh를 형성합니다.	와 그 좌표를 입력하면 2D 확장되어 3D

```
* _____
* CARD 3.1
* BLNAME
BLOCK1
= Block의 이름을 입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력
가능합니다.
* CARD 3.2
* IBLNO
1
=>Block의 번호를 입력합니다.
* CARD 3.3
* I J LTYPE
   2 0
1
=> 해당 Block을 구성하는 시작점과 끝나는 절점번호를 입력합니다. LTYPE이 0인 경우는 직선
  을 따라 요소가 생성됨을 나타냅니다.
* CARD 3.4
              => NDZ : Z방향으로 생성할 요소의 수를 입력합니다.
* NDZ ALPA
                α = 0.5 : 요소의 길이를 일정하게 나눕니다.
                  = 0.3 : 요소의 길이가 절점 I에서 J로 갈수록 점차 증가
     0.3
 10
                        하며 나눠집니다.
                  = -0.3 : 요소의 길이가 절점 J에서 I로 갈수록 점차 증가
                        하며 나눠집니다.
* _____
* CARD 4.1
* ITRANB
 0
=> ITBANB = 0 Transmitting 경계를 지정하지 않습니다.
       = 1 절점을 기반으로 하는 Transmitting 경계를 지정합니다.
       = 2 요소를 기반으로 하는 Transmitting 경계를 지정합니다.
 ITBANB가 0인 경우 나머지 Card가 이용되지 않습니다.
* END OF DATA
*_____
 만들어진 data파일을 지정된 폴더에 저장합니다.
```

2.2.3 GEN-3D 실행하기

GEN-3D를 실행시키기 위하여 그림 4와 같이 *Run => Presmap => Gen-3D*를 선택합니 다.

SMAP-3D		
Run Plot Se	tup	Exit
Smap	•	1
Presmap	•	Presmap - 2D
Addrgn	•	Natm - 2D
Femap	•	Circle - 2D
Plotmesh	•	Presmap - 3D
Supplement	•	Cross - 3D
Load	- F	Gen - 3D
User Application	•	Presmap - GP

그림 4. GEN-3D 프로그램 실행

그러면 그림 5와 같이 GEN-3D와 관련된 Input 및 Output 파일 이름 창이 나타납니다. Input 파일로 이미 준비된 GEN-3D Data 파일 (ZI.dat)과 2D 단면 Mesh 파일 (2D_Mesh.dat)을 입력하고 Output 파일 (ZI.out)을 입력한 다음 OK 버튼을 클릭합니다.

S Input and Output File Name for GEN-3D	×
Input File Name for GEN-3D	
Zl.dat	Browse
Input File Name for 2D Mesh	
2D_Mesh.dat	Browse
Output File Name	
Zl.out	

그림 5. GEN-3D Input 및 Output 파일 입력 창

2.2.4 생성된 3D Mesh Plot 하기

GEN-3D 프로그램이 종료되면 그림 6과 같은 PRESMAP Mesh Plot Option 창이 나타납 니다. "Plot by PLOT_2D.3D" 선택 후 OK 버튼을 클릭하여 Plot-3D 프로그램을 실행합 니다.

그림 6. PRESMAP Mesh Plot Option.

그림 7과 같이 Plot-3D 창이 나타나면 파일 오픈툴바 버튼 ☞을 클릭하여 그림 8의 오픈 파일 입력 창에서 자동 생성된 3D 입체 Mesh 파일 (ZI.out)을 선택합니다.

PLOT-3D				
← → ↑ ↓ ± ⊗	9 3 Q	ବ୍ 🖸 🗲 All	88	
				Total Dimension X - direction Min = 1.e+035 Max = -1.e+035 Y - direction Min = 1.e+035 Max = -1.e+035 Z - direction Min = -1. Max = 1.
				x
	그림 7.	Plot-3D	장	

2.2.5 생성된 3D Mesh 파일 보기

GEN-3D 프로그램 실행 후 생성된 ZI.out (디폴트 output 파일 이름) 파일은 SMAP-3D 프로그램의 Input File 중의 하나인 Mesh File과 동일한 포맷으로 되어 있어 파일이름만 변경하여 Mesh File로 사용됩니다.

ZI.out 파일은 해석할 구조물을 나타내는 유한요소망의 좌표, 재료번호 등을 포함하고 있습니다. 자세한 설명은 SMAP-3D 사용자 매뉴얼의 Mesh File을 참고하기 바랍니다.

46959	42560		0	6	60														
NODAL	BOU	NDARY	CONDI	TIO	NS	&			COORD	INAT	res								
NODE	ISX	ISY I	SZ 1	FX	IFY	IFZ	IRX	IRY	IRZ	IΕΣ	K IEY	IEZ		X	С		Y	С	ZC
1	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		2144	00E+02	.300000E+02
2	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		2094	00E+02	.300000E+02
3	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		2044	00E+02	.300000E+02
4	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		1994	00E+02	.300000E+02
5	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		1944	00E+02	.300000E+02
6	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		1894	00E+02	.300000E+02
7	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		1844	00E+02	.300000E+02
8	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00	•	1794	00E+02	.300000E+02
9	1	0	1	1	1	1	1	1	1	1	1	1	•	0000	00E+00	•	1724	00E+02	.300000E+02
10	1	0	1	1	1	1	1	1	1	1	1	1	•	0000	00E+00	•	.1694	00E+02	.300000E+02
11	1	0	1	1	1	1	1	1	1	1	1	1	•	0000	00E+00	•	1644	00E+02	.300000E+02
-	1	0	1	1	1	1	1	1	1	1	1	1		0000	00E+00		1594	00E+02	.300000E+02
-																			
46940	0	0	1	1	1	1	1	1	0	1	1	1		2554	99E+02		2571	98E+01	300000E+02
46941	0	0	1	1	1	1	1	1	0	1	1	1		2523	55E+02		1903	59E+01	300000E+02
46942	0	0	1	1	1	1	1	1	0	1	1	1	•	2513	18E+02		1573	19E+01	300000E+02
46943	0	0	1	1	1	1	1	1	0	1	1	1	•	2501	25E+02		9282	65E+00	300000E+02
46944	0	0	1	1	1	1	1	1	0	1	1	1	•	2499	01E+02		4988	30E+00	300000E+02
46945	0	0	1	1	1	1	1	1	0	1	1	1		2500	61E+02		5438	11E-01	300000E+02
46946	0	0	1	1	1	1	1	1	0	1	1	1	•	2504	95E+02		5749	95E+00	300000E+02
46947	U	U	1	1	1	1	1	1	U	1	1	1		2511	31E+02		1520	U6E+01	300000E+02
46948	0	0	1	1	1	1	1	1	0	1	1	1	•	2520:	57E+U2		.1539	10E+01	=.300000E+02
46949	0	0	1	1	1	1	1	1	0	1	1	1	•	2532	30E+02		2034	03E+01	=.300000E+02
40930	0	0	1	1	1	1	1	1	0	1	1	1	•	2547	22E+U2		2329	52E+UI 72E+01	300000E+02
46952	0	0	1	1	1	1	1	1	0	1	1	1		2601	67E+02		2833	47E+01	300000E+02
46953	0	0	1	1	1	1	1	1	0	1	1	1	•	2651	47E+02		2035	718+01	- 300000E+02
46954	0	0	1	1	1	1	1	1	0	1	1	1	•	2701	268+02		2981	26E+01	- 300000E+02
46955	0	0	1	1	1	1	1	1	0	1	1	1	•	2751	058+02		3039	218+01	- 300000E+02
46956	0	0	1	1	1	1	1	1	0	1	1	1		2800	84E+02		3086	192+01	- 300000E+02
46957	0	0	1	1	1	1	1	1	0	1	1	1		2850	63E+02		3122	73E+01	- 300000E+02
46958	0	0	1	1	1	1	1	1	0	1	1	1		2900	42E+02		3148	86E+01	300000E+02
46959	0	0	1	1	1	1	1	1	0	1	1	1		2950	21E+02		3164	61E+01	300000E+02
ELEMEN	T INDEX																		
NEL	I1	I2	I3		I4	I5		I6	I7		I8	MATC	KS	KF :	INTR I	NTS	INTT	TBJW	L
1	70	1	2		71	43	39	4270	427	1	4340	1	0	1	2	2	2	.0000E	+00
2	71	2	3		72	43	40	4271	4272	2	4341	1	0	1	2	2	2	.0000E	+00
3	72	3	4		73	43	41	4272	4273	3	4342	1	0	1	2	2	2	.0000E	+00
4	73	4	5		74	43	42	4273	427	4	4343	1	0	1	2	2	2	.0000E	+00
5	74	5	6		75	43	43	4274	4275	5	4344	1	0	1	2	2	2	.0000E	+00
6	75	6	7		76	43	44	4275	427	6	4345	1	0	1	2	2	2	.0000E	+00
7	76	7	8		77	43	45	4276	427	7	4346	1	0	1	2	2	2	.0000E	+00
8	77	8	9		78	43	46	4277	4278	3	4347	1	0	1	2	2	2	.0000E	+00
9	78	9	10		79	43	47	4278	4279	9	4348	2	0	1	2	2	2	.0000E	+00
10	79	10	11		80	43	48	4279	4280)	4349	2	0	1	2	2	2	.0000E	+00
11	80	11	12		81	43	49	4280	4283	1	4350	2	0	1	2	2	2	.0000E	+00
12	81	12	13		82	43	50	4281	4282	2	4351	2	0	1	2	2	2	.0000E	+00
13	82	13	14		83	43	51	4282	4283	3	4352	2	0	1	2	2	2	.0000E	+00
-																			
-																			
-	1 5 4 1 0	45044		100	11150	~		0	0		0	~	15	1	2	~	~	0000-	
42348	40419	40345	> 410	150	41150	0		0	0		0	ъ С	15	⊥ 1	2	2	2	.0000E	
42349 12550	40420	40419	7 411) 411	151	41101	0		0	U O		0	8 0	15	⊥ 1	2	2	2	.0000E	
4200U	40490	43420	, 411	101	41221	0		0	0		0	ð o	1 F	1	2	2	2	.0000E	.+00
12550	40491	40490	, 412 л1с	-21 222	41222	0		0	0		0	0	15	⊥ 1	2	2	2	.0000E	
72332	40492 45700	40491	. 412) л15	222	41223	0		0	0		0	d Q	15	⊥ 1	2	2	2	.0000E	+00
42552	77472	-0492	. 412	دے۔	71224	U		v	U		0	o	τJ	Ŧ	2	2	4	.00008	
42553	11100	11100	> > > > > > > > > > > > > > > > > > > >	220	30010	0		0	0		0	0	1	1	2	')	·)	0000	+00
42553 42554 42555	44188	44189	399	920	39919	0		0	0		0	8 9	15	1	2	2	2	.0000E	+00

81 4411 4																	
<pre>3 4 4 4 1 4 4 11 1 3 5 4 4 5 3 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	2557	44116	44117	39848	39847	0	0	0	0	8	15	1	2	2	2	.0000E+00	
<pre>v3 411 411 19462 3944 0 0 0 0 0 0 115 1 2 2 2 0.0000+00 ms Himmy Hundx 1 1 0 4070 1 1 1 43 288 3007 1 1 4 34 286 3073 1 1 4 34 2867 2335 1 1 1 44 2867 2335 1 1 1 44 2867 2335 1 1 1 14 4108 1 1 1 14 4108 4109 1 1 1 14 4108 4109 1 1 1 14 4108 4109 1 1 1 14 4108 4109 1 1 1 14 4104 410 1 1 1 14 4104 410 1 1 1 14 4104 410</pre>	2558	44115	44116	39847	39846	0	0	0	0	8	15	1	2	2	2	.0000E+00	
<pre>N</pre>	2560	44114	44113	30845	39847	0	0	0	0	0	15	1 1	2	2	2	00008+00	
1 3 94070 K 12 2001 2330 1 1 13 2006 2330 1 1 14 2007 1 1 1 15 2016 2144 1 1 157 2730 1 1 1 157 2730 1 1 1 157 2730 1 1 1 157 2730 1 1 1 154 2787 2353 1 1 154 4176 4108 1 1 11 4104 1 1 1 124 4401 1 1 1 134 3894 4999 1 1 134 3894 47941 1 1 125 4111 4041 1 1 124 4794 1 1 124 <t< td=""><td>RUSS</td><td>FLEMENT</td><td>TNDEX</td><td>55045</td><td>55044</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>10</td><td>1</td><td>2</td><td>2</td><td>2</td><td>.0000100</td><td></td></t<>	RUSS	FLEMENT	TNDEX	55045	55044	0	0	0	0	0	10	1	2	2	2	.0000100	
<pre>44 200 306 1 1 2 45 265 303 1 1 1 45 205 303 1 1 1 45 205 303 1 1 1 45 205 303 1 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016 1 1 45 207 3016</pre>	ET.	Т	J	MATC	к												
<pre>Name 2 4 2 4 2 3 2 3 1 1 1 4 4 2 0 0 7 1 3 1 4 4 4 2 0 0 7 1 3 1 4 4 5 0 0 7 1 3 1 4 5 1 5 1 1 1 5 4 3 1 7 1 1 5 4 3 1 7 1 1 1 4 4 0 8 4 0 3 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 1 4 4 0 8 4 0 3 1 1 1 1 1 4 0 8 1 0 3 1 1 1 1 1 4 0 8 1 0 3 1 1 1 1 1 4 0 8 1 0 3 1 1 1 1 1 4 0 8 1 0 3 1 1 1 1 1 1 4 0 8 1 0 1 1 1 1 1 1 4 0 8 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	2561	2801	2869	1	1												
<pre>46</pre>	2562	2869	2938	1	1												
<pre>https://www.setup.com/setup.com</pre>	2563	2938	3007	1	1												
465 3746 3144 1 1 467 2730 2730 1 1 467 2730 2787 1 1 467 2730 2877 1 1 468 2798 2887 1 1 470 2915 3003 1 1 10 44178 4408 1 1 11 44208 4399 2 1 12 44039 3289 2 1 13 43989 4390 1 1 14 43903 1 1 14 43903 1 1 14 43903 1 1 14 43903 1 1 14 43903 1 1 14 43903 1 1 13 43934 43764 1 1 139 43934 43764 1	2564	3007	3076	1	1												
Add Add <td>2565</td> <td>3076</td> <td>3144</td> <td>1</td> <td>1</td> <td></td>	2565	3076	3144	1	1												
<pre>46 29 0 29 7 1 1 1 16 29 6 28 7 28 5 1 1 1 17 29 3 30 3 1 1 1 10 417 4108 1 1 1 14 4108 4039 1 1 14 4399 4386 1 1 14 4389 4380 1 1 15 4411 1 1 14 4389 4380 1 1 15 4411 4041 1 10 4383 4370 1 10 4383 4370 1 11 13 4313 4111 4041 1 10 4383 4370 1 1 1 3 430 3 4370 1 1 1 3 430 3 4370 1 1 1 3 430 3 4370 1 1 1 1 3 440 3 40 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	2566	3144	3213	1	1												
<pre>888 298 2867 1 1 1 10 44178 44108 1 1 11 44108 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 11 4408 4403 1 1 12 4376 1 1 13 4380 1 3 14 1 14 430 1 430 1 15 4411 404 1 1 1 14 14 1 14 1 15 4411 404 1 1 14 1 15 4411 404 1 15 441 16 1 17 4372 1 17 4 17 4 17 4 17 4 17 4 17 4 17 4 17</pre>	2567	2730	2798	1	1												
<pre>80 2007 2003 1 1 1 10 4170 4400 1 1 1 11 4400 4403 1 1 11 4309 4300 1 1 13 4404 4309 1 1 13 4309 4300 1 1 13 4309 4300 1 1 13 4309 4300 1 1 13 4309 4300 1 1 13 4309 4300 1 1 13 4309 4300 1 1 13 4309 4300 1 1 1 13 4300 1300 1 1 1 13 4300 1300 1 1 1 13 4300 1300 1 1 1 13 4300 1300 1 1 1 13 4300 1 1 1 14 4300 1 1 14 4300 1 1 1 14 4300 1 1 1 14 4300 1 1 1 14 4300 1 1 1 14 4300 1 1 1 14 4300 1 1 1 1 14 4300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	2568	2798	2867	1	1												
70 2935 3003 1 1 1 11 44108 4439 1 1 12 44396 4399 1 2 13 4396 4399 1 2 13 4396 4399 1 2 13 4411 4441 2 1 14 4399 4393 1 1 13 4393 4393 1 1 13 4393 4393 1 2 13 4393 4393 1 2 13 4393 4393 1 2 20 43764 4395 2 2 38D 9.61 MOVIS MELVIS 0 0	2569	2867	2935	1	1												
10 44178 44108 1 1 1 11 4400 44039 1 1 1 12 44039 4330 1 1 1 13 4401 4037 1 1 1 14 4399 4330 1 1 1 15 4401 4357 1 1 1 15 4334 4356 1 1 1 10 4334 4356 1 1 1 10 4334 4356 1 1 1 10 4354 4356 1 1 10 MUVIS NEVIS 0 0	2570	2935	3003	1	1												
10 44178 44108 1 1 11 44108 4403 1 1 13 43696 3369 1 1 13 43696 33830 1 1 15 4411 4041 1 1 14 4397 34972 1 1 15 4411 4041 1 1 13 4369 3434 1 1 13 4369 3434 1 1 10 4389 43764 1 1 20 43764 3399 1 1 20 43764 3399 1 1 20 3764 1 20 0 0																	
10 44178 44108 1 1 1 11 44108 44039 1 1 13 4396 3399 1 1 13 4393 4390 1 1 15 4411 43972 1 1 15 4431 43972 1 1 15 4393 43974 1 1 15 4393 43976 1 1 15 4393 43764 1 1 15 4393 43764 1 1 15 4393 43764 1 1 10 4394 43776 43776 4 10 4 44 44 44 44 44 44 44 44 44 44 44 44																	
10 4478 44108 1 1 1 11 44108 44099 1 1 13 4366 43989 1 1 13 4366 4399 1 1 14 4404 1 1 1 14 4404 1 1 1 15 4411 44041 1 1 12 43972 4390 1 1 12 43974 43895 1 1 12 4396 4384 1 1 12 4386 4389 1 1 13 4360 4384 1 1 13 4360 4389 1 1 14 400 1 4 10 1 1 10 1 10 1 1																	
11 4409 44039 1 1 12 44039 43899 1 1 13 4389 4389 1 1 13 4389 4380 1 1 15 4401 4372 1 1 13 4383 4376 1 1 13 4383 4376 1 1 23 4384 4376 1 1 23 4384 4376 1 1 23 4384 4376 1 1 23 4384 4376 1 1 20 7 0	3210	44178	44108	1	1												
12 44039 4399 1 1 13 4399 43930 1 1 15 4411 44041 1 1 16 44041 4392 1 1 13 4393 4393 1 1 14 4395 1 1 20 4376 43855 1 1 20 0 0	8211	44108	44039	1	1												
13 43999 43939 1 1 1 14 43899 43930 1 1 15 4401 4372 1 1 15 43903 4384 1 1 13 43834 43764 1 1 13 43834 43764 1 1 20 43764 4365 1 1 MDFVIS MELVIS 0 0	3212	44039	43969	1	1												
14 4399 4330 1 1 1 15 4411 44972 1 1 17 43972 4393 1 1 15 43834 43764 1 1 20 43764 4365 1 1 XRD 9.6.1 NOUVIS NELVIS 0 0	3213	43969	43899	1	1												
115 44111 44041 1 1 1 127 43972 43903 1 1 128 43903 43834 1 1 120 43764 43695 1 1 220 43764 43695 1 1 220 43764 43695 1 1 220 0 0	3214	43899	43830	1	1												
116 4401 43972 1 1 127 43972 43933 1 1 128 43963 4384 1 1 120 43764 43695 1 1 121 43835 43764 1 1 121 43835 43764 1 1 121 43855 1 1 12	3215	44111	44041	1	1												
17 4372 43903 1 1 13 43903 43364 1 1 12 43834 43764 1 1 20 43764 43695 1 1 XAND 9.6.1 0 0 0	3216	44041	43972	1	1												
li 4303 43834 1 1 19 4384 43695 1 1 20 43764 43695 1 1 NOVIS NELVIS 0 0	3217	43972	43903	1	1												
119 4384 43764 1 1 1 220 4376 43695 1 1 ARD 9.1 NOVYIS NEIVIS 0 0	3218	43903	43834	1	1												
zz 43764 4369 1 1 xard 9.6.1 NOVIS NELVIS 0 0	3219	43834	43764	1	1												
XARJ 9.6.1 NOUVIS NELVIS 0 0	3220	43764	43695	1	1												
YARU 9. 1 NOVI 3 NELI 3 O O																	
NDUYI NEIVI3 0 0	CARI) 9.6.1															
	NOL	JVIS N	ELVIS														
	0		0														
	U		U														

	Open ?X
	Look in: 🗀 INPUT 🔽 🗲 🖻 📸 📰 -
	Temp 2D_Mesh.dat My Recent
	Documents ZI.OUT
	Desktop
	My Doc ments
	My Computer
	File name: Qpen Mu Network Files of type:
	Places Open as read-only
	그림 8. Open 파일 입력 창
그리 0a느	" 추과 " 수 0 도 회 저 시 키 3 D 저 체 응 하 9 소 마 이 니 다 - 3 D 이 주 9 기 는 으
1.2.5절을 참	조하기 바랍니다.
	Ele View Model Bot Help
	y
	View Nu 4. Su Filline cleffient, westes Full NA, IM FullPhel
	그림 9a. 자동 생성된 3D 전체 유한요소망

그림 9d는 Joint 요소로 모델링된 Shotcrete와 Lining 사이의 Interface 방수막을 보여줍니다.

그림 9d. Shotcrete와 Lining 사이의 Interface 방수막

Ex_3 RCD Pile

2.3 Ex_3 RCD Pile

본 예제는 송전선 기초인 RCD 콘크리트 Pile과 주변지반의 3차원 Mesh를 AIG와 GEN-3D를 사용하여 생성시킨 예제입니다.

그림 1은 본 예제의 측면 개략도로 직경이 4m이고 길이가 8m인 철근 콘크리트 Pile이 모래층을 관통하여 연암에 정착된 상태를 나타내고 그림 2는 평면 개략도로 가로×세로가 50m×50m인 사각형 해석단면의 중앙에 Pile이 위치한 상태를 나타냅니다.

2.3.1 2D Mesh 파일 작성하기

본 예제의 2차원 대표단면 Mesh는 AIG를 사용하여 작성하였습니다. 그림 3은 Base Mesh와 Pile Group을 보여줍니다. Pile이 타입 될 중앙부분의 Mesh를 세밀하게 나누고 주위지반은 중앙에서 멀어질수록 Mesh의 크기를 커지게 하기 위하여 수평과 수직으로 각각 3개의 Block을 사용하였습니다. AIG에서 작성할 2D Mesh는 지표면을 나타내므로 Base Mesh창에서 경계조건은 모두 Roller로 설정해야 합니다.

표 1은 AIG 실행 후에 Output로 생성된 Text 파일 ADDRGN.INP의 Listing입니다. 그리 고 표 2는 ADDRGN-2D 프로그램 실행 (Execute) 후 생성된 Group.Mes 파일 Listing으로 SMAP-2D 프로그램의 Input File중의 하나인 Mesh File과 동일한 포맷으로 되어있습니다. 그림 4는 Group.Mes 파일을 Plot-3D로 Plot한 것으로 본 예제의 2차원 대표단면 Mesh로 사용합니다.

AIG를 사용하여 2D Mesh를 생성하는 모든 과정은 "지반구조물 유한요소망 작성 Part I AIG 2007년 2월"에 있는 예제에 자세히 설명되어 있습니다.

그림 3. Base Mesh 및 Pile Group

```
표 1. ADDRGN.INP 파일 Listing.
* Card 1.1
* IMOD
 2
* Card 4.1
* NBX NBY IB_LEFT IB_RIGHT IB_TOP IB_BOTTOM
 3 3 1 1 1 1
* Card 4.2
* Xo Yo Ywater
-2.50000E+01 -2.50000E+01 -3.00000E+01
* Card 4.3
* W
             DX AX
2.25000E+01 4.00000E-01 -3.00000E-01
5.00000E+00 4.00000E-01 5.00000E-01
 2.25000E+01 4.00000E-01 3.00000E-01
* Card 4.4
* Н DY АУ
2.25000E+01 4.00000E-01 -3.00000E-01
5.00000E+00 4.00000E-01 5.00000E-01
2.25000E+01 4.00000E-01 3.00000E-01
* Card 4.5
* IGMOD
 1
* Card 3.1-1
* FILEA
BMESH.DAT
* Card 3.1-2
* FILEM
GROUP.MES
* Card 3.2
* NSNEL NSNODE
 1 1
* Card 3.3
* IEDIT
 4
* Card 3.3.5.1
* NODE
 0
* Card 3.3.5.2
* NOEL
 0
* Card 3.3.5.3
* IBOUND
```

```
0
* Card 3.3.5.4-1
* NGROUP IGTITL
 1 1
* Card 3.3.5.4-2
* Xref Yref
0.00000E+00 0.00000E+00
*
* Group No = 1
RCD Pile
*
* Card 3.3.5.4.1
* MTYPE IGPOST OVERLAY GCOLOR GLTYPE GLTHIC GHIDE
 4 0 0 0 0 0 0
* Card 3.3.5.4.1-1
* MAT KF LTP LMAT MATold
 3 1 0 0 4
*-----
*
* Card 3.3.5.4.2
* NPOINT MOVE IREF XLo YLo
 1 0 0 0.00000E+00 0.00000E+00
* Card 3.3.5.4.2-1
* NP X Y
 1 2.00000E+00 0.00000E+00
* Card 3.3.5.4.3
* NSEGMENT GNODX GNODY
 1 0.00000E+00 0.00000E+00
* Card 3.3.5.4.3.1
* SEGNO LTYPE NDIV IEND
 1 2 0 2
* Card 3.3.5.4.3.1-1
* Xo Yo Rx Ry Qb Qe
0.0000E+00 0.0000E+00 2.0000E+00 2.0000E+00 0.00 360.00
*
*_____
```

표 2. Group.Mes 파일 Listing

₩GROUP.ME	S															
NUMNP	NCON	T N	VBEAM	NTR	US											
1681	1692		0		0											
NODAL	COORI	DINAT	res													
NODE	ISX	ISY	IFX	IFY	IRZ	IEX	IEY	X	С		YC					
1	1	1	1	1	1	1	1	25000	0E+02	.2500	00E+0)2				
2	1	0	1	1	1	1	1	25000	0E+02	.2219	90E+0)2				
3	1	0	1	1	1	1	1	25000	0E+02	. 1958	816E+0)2				
4	1	0	1	1	1	1	1	25000	0E+02	.1714	80E+0)2				
5	1	0	1	1	1	1	1	25000	0E+02	.1489	980E+0)2				
6	1	0	1	1	1	1	1	25000	0E+02	. 1283	816E+0)2				
7	1	0	1	1	1	1	1	25000	0E+02	.1094	90E+0)2				
8	1	0	1	1	1	1	1	25000	0E+02	.9250	000E+0)1				
1674	1	0	1	1	1	1	1	.25000	0E+02	9250	00E+0)1				
1675	1	0	1	1	1	1	1	1.250000E+02		1094	90E+0)2				
1676	1	0	1	1	1	1	1	.250000E+02		1283	816E+0)2				
1677	1	0	1	1	1	1	1	.250000E+02		1489	980E+0)2				
1678	1	0	1	1	1	1	1	.250000E+02		1714	80E+0)2				
1679	1	0	1	1	1	1	1	.250000E+02		1958	816E+0)2				
1680	1	0	1	1	1	1	1	.250000E+02		2219	90E+0)2				
1681	1	1	1	1	1	1	1	.250000E+02		2500	000E+0)2				
ELEME	NT IN	DEX														
NEL	Ι1		I2	13	Ι	4	M5	M6	M7	M8	MATC	KS	KF	INTR	INTS	TBJWL
1	42		1	2	4	3	0	0	0	0	1	0	1	2	2	.0000E+00
2	43		2	3	4	4	0	0	0	0	1	0	1	2	2	.0000E+00
3	44		3	4	4	5	0	0	0	0	1	0	1	2	2	.0000E+00
4	45		4	5	4	6	0	0	0	0	1	0	1	2	2	.0000E+00
5	46		5	6	4	7	0	0	0	0	1	0	1	2	2	.0000E+00
6	47		6	7	4	8	0	0	0	0	1	0	1	2	2	.0000E+00
7	48		7	8	4	9	0	0	0	0	1	0	1	2	2	.0000E+00
8	49		8	9	5	0	0	0	0	0	1	0	1	2	2	.0000E+00
•																
•																
1685	1046	10	005	1006	104	7	0	0	0	0	3	0	1	2	2	.0000E+00
1686	1047	10	006	1007		0	0	0	0	0	3	0	1	2	2	.0000E+00
1687	1003	10	004	1045		0	0	0	0	0	3	0	1	2	2	.0000E+00
1688	960	9	961	1002		0	0	0	0	0	3	0	1	2	2	.0000E+00
1689	877	8	378	919		0	0	0	0	0	3	0	1	2	2	.0000E+00
1690	795	7	755	796		0	0	0	0	0	3	0	1	2	2	.0000E+00
1691	714	6	574	715		0	0	0	0	0	3	0	1	2	2	.0000E+00
1692	675	6	535	676		0	0	0	0	0	3	0	1	2	2	.0000E+00
0																
0																

그림 4a. 2차원 대표단면 유한요소망 (Group.Mes)

그림 4c. Pile 위치에 있는 토층 (재료번호 4) 및 주변토층 (재료번호 1) 요소망
2.3.2 3D로 확장하기 위한 ZI.dat 파일 작성하기

ZI.dat 파일은 2차원 대표단면 Mesh를 단면에 수직한 방향으로 확장시켜 3차원 입체 유한요소망을 생성하는데 필요한 GEN-3D Data 파일로 Word Pad나 Note Pad와 같은 Text 편집기를 사용하여 작성합니다.

본 예제는 그림 5에서 보는 바와 같이 Pile의 길이 방향으로 4개의 Block으로 구성되어 있습니다. Block 1은 지표면 위에 돌출한 Pile (재료번호 3) 두부를 나타냅니다. Block 2는 토층 (재료번호 1)과 Pile (재료번호 3) 그리고 Pile 위치에 있는 토층 (재료번호 4)을 포함하고 있습니다. 따라서 재료번호 1과 4는 같은 원지반 토층을 나타냅니다. Block 3은 Pile 정착부 높이에 있는 연암층 (재료번호 2)과 Pile (재료번호 3) 그리고 Pile 위치에 있는 연암층 (재료번호 5)을 포함합니다. 마지막 Block 4는 Block 3과 같은 연암층으로 재료번호 7과 10으로 이루어졌습니다.

해석의 경제성과 정확성을 고려하여, Block 1~3에서의 요소는 등간격으로 등분하였고 Block 4에서는 요소의 길이가 밑면으로 갈수록 점차 증가하여 나누었습니다.

ZI.dat 파일 작성에 관한 자세한 설명은 1.3절의 GEN-3D 사용자 매뉴얼과 다음 페이지 ZI.dat 파일 Listing의 주석을 참조하기 바랍니다.

그림 5. Pile 길이 방향으로 Block과 재료번호.

```
2.3.2.1 ZI.dat 파일 Listing
 * CARD 1.1
 * TITLE
  3-D RCD Pile GENERATION BY GEN-3D (Group.mes)
 => 제목을 입력하는 Card로 최대 60 Character 영문으로만 입력 가능합니다.
 * CARD 1.2
 * NBZ NBNODE NSNODE NSNEL IBOUND IPLANE ICLOSE CMFAC
                                0
   4 5
          1 1 0
                           2
                                        1.0
   • Z방향으로 생성할 Block의 개수(NBZ)와 절점의 개수(NBNODE)를 입력합니다. 각 Block
     마다 LTYPE과 Z방향으로 생성될 요소의 수, 간격 등의 세부사항이 Card 3에서 지정됩니
     다.
             : Z축으로 확장될 절점의 새로운 시작 번호를 나타냅니다.

    NSNODE

             : Z축으로 확장될 요소의 새로운 시작 번호를 나타냅니다.

    NSNEL

   • IBOUND = 0 : 경계면을 지정하지 않습니다. (초기 자동설정 값)
           = 1 : Truss 요소로 나타나는 Wire Frame경계를 포함합니다.
           = 2 : Shell 요소로 나타나는 평면경계를 포함합니다.
           = 3 : Wire Frame과 평면 경계를 포함합니다.
   ◆ IPLANE = 0 : 입력된 2차원 단면을 X-Y평면에 확장합니다. (초기 자동설정 값)
           = 1 : 입력된 2차원 단면을 Z-Y평면에 확장합니다.
           = 2 : 입력된 2차원 단면을 z-x평면에 확장합니다.
           = 3 : 입력된 2차원 단면을 임의의 평면에 확장합니다.
   • ICLOSE = 0 : 개방된 루프로써 시작단면과 끝나는 단면이 만나지 않습니다.
           = 1 : 폐쇄된 루프로써 시작단면과 끝나는 단면이 동일합니다.
             : 2차원 단면의 좌표 축적비를 나타냅니다.(대부분 1로 사용됨)

    CMFAC

 * CARD 1.3
 * IBZ base IBZ front IBZ back
    1
         1
                  3
 => 각각 내부를 구성하는 요소의 경계조건(IBZ base), 앞면을 구성하는 요소의 경계조건
   (IBZ front), 뒷면을 구성하는 요소의 경계조건(IBZ back)을 나타냅니다.
                    ISZ : 골격의 Z방향 자유도.
   IBZ ISZ IFZ
                    IFZ : 간극수의 골격에 대한 Z방향 상대 자유도.
   0
     0
          0
           1
    1
       0
                    ISZ, IFZ =0 : 지정된 방향으로 움직임이 허용됨.
            0
    2
       1
                    ISZ, IFZ =1 : 지정된 방향으로 움직임이 고정됨.
    3
       1
           1
 * CARD 2.1
 * NODE Zp
             Хр
       20.00
             0
   1
                     => Center Line의 절점의 번호와 그 좌표를 나타냅니다.
       19.50 0
   2
                        Center Line을 입력하면 2D Mesh가 Center Line을
   3
       12.50 0
       12.00 0
                        따라 확장되어 3D 입체 Mesh를 형성합니다.
   4
        0.00 0
   5
```

```
* CARD 3.1
* BLNAME
BLOCK1
=> Block의 이름을 입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력 가능합
 니다.
* CARD 3.2
* IBLNO
 1
=> Block의 번호를 입력합니다.
* CARD 3.3
* I J LTYPE IMATC IMATB IMATT
 1 2
       0
            0
                 0
                       0
  • I, J
          : 해당 Block을 구성하는 시작하는 절점(I)과 끝나는 절점(J)의 번호를
             입력합니다.
  • LTYPE = 0 : Z방향으로 직선 형태로 요소가 생성됨을 나타냅니다.
       = 1 : Z방향으로 곡선 형태로 요소가 생성됨을 나타냅니다.

    IMATC : 연속체 요소의 재료번호를 입력한 숫자만큼 증가합니다.

          : Beam 요소의 재료번호를 입력한 숫자만큼 증가합니다.

    IMATB

           : Truss 요소의 재료번호를 입력한 숫자만큼 증가합니다.
  ◆ IMATT
* CARD 3.4
* NDZ ALPA MC1 MC2 MC3 MB MT
 1
      0.5
          -1 -4
                 0
                     0
                         0
  ◆ NDZ
        : Z 방향으로 생성할 요소의 수를 입력합니다.
    α = 0.5 : 요소의 길이를 일정하게 나눕니다.
     = 0.3 : 요소의 길이를 절점 I에서 J를 갈수록 점차 증가하며 나눕니다.
     = -0.3 : 요소의 길이를 절점 J에서 I를 갈수록 점차 증가하며 나눕니다.
           : 수정되지 않을 연속체 요소의 재료번호를 나타냅니다.
  ◆ MC
           : 수정되지 않을 Beam 요소의 재료번호를 나타냅니다.
  ◆ MB
           : 수정되지 않을 Truss 요소의 재료번호를 나타냅니다.
  ◆ MT
! 참고 : 만약 MC, MB, MT가 (-)기호를 가지고 있다면 이들 재료번호에 해당하는 요소는 생성
      되지 않습니다.
✔ Card 3.3에서 IMATC=0과 Card 3.4에서 MC1=-1, MC2=-4로 지정한 것은 Block 1에서
 이미 존재하는 원지반의 재료 1, 4가 작용하지 않고, AIG로 입력된 재료 3만 작용한다는
 것을 뜻합니다. 따라서 Block 1에는 재료 3만이 존재합니다.
```

_____ * CARD 3.1 * BLNAME BLOCK2 => Block의 이름을 입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력 가능합 니다. * CARD 3.2 * IBLNO 2 => Block의 번호를 입력합니다. * CARD 3.3 * I J LTYPE IMATC IMATB IMATT 2 3 0 0 0 0 ◆ I, J : 해당 Block을 구성하는 시작하는 절점(I)과 끝나는 절점(J)의 번호를 입력합니다. • LTYPE = 0 : Z방향으로 직선 형태로 요소가 생성됨을 나타냅니다. = 1 : Z방향으로 곡선 형태로 요소가 생성됨을 나타냅니다. : 연속체 요소의 재료번호를 입력한 숫자만큼 증가합니다. IMATC : Beam 요소의 재료번호를 입력한 숫자만큼 증가합니다. IMATB : Truss 요소의 재료번호를 입력한 숫자만큼 증가합니다. ♦ IMATT * CARD 3.4 * NDZ ALPA MC1 MC2 MC3 MB MT 14 0.5 0 0 0 0 0 • NDZ : Z 방향으로 생성할 요소의 수를 입력합니다. α = 0.5 : 요소의 길이를 일정하게 나눕니다. = 0.3 : 요소의 길이를 절점 I에서 J로 갈수록 점차 증가하며 나눕니다. = -0.3 : 요소의 길이를 절점 J에서 I로 갈수록 점차 증가하며 나눕니다. ◆ MC : 수정되지 않을 연속체 요소의 재료번호를 나타냅니다. : 수정되지 않을 Beam 요소의 재료번호를 나타냅니다. ◆ MB : 수정되지 않을 Truss 요소의 재료번호를 나타냅니다. ◆ MT ! 참고 : 만약 MC, MB, MT가 (-)기호를 가지고 있다면 이들 재료번호에 해당하는 요소는 생성되지 않습니다. ✔ Card 3.3에서 IMATC=0과 Card 3.4에서 MC=0으로 지정한 것은 Block 2에서 이미 존재 하는 원지반의 재료 1, 4와 AIG로 입력된 재료 3이 수정되지 않고 작용한다는 것을 뜻합니다. 따라서 Block 2에는 재료 1, 3, 4가 존재합니다.

* CARD 3.1 * BLNAME BLOCK3 => Block의 이름을 입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력 가능합 니다. * CARD 3.2 * IBLNO 3 => Block의 번호를 입력합니다. * CARD 3.3 I J LTYPE IMATC IMATB IMATT 3 4 0 **1** 0 0 • I, J : 해당 Block을 구성하는 시작하는 절점(I)과 끝나는 절점(J)의 번호를 입력합니다. • LTYPE = 0 : Z방향으로 직선 형태로 요소가 생성됨을 나타냅니다. = 1 : Z방향으로 곡선 형태로 요소가 생성됨을 나타냅니다. • IMATC : 연속체 요소의 재료번호를 입력한 숫자만큼 증가합니다. : Beam 요소의 재료번호를 입력한 숫자만큼 증가합니다. IMATB ◆ IMATT : Truss 요소의 재료번호를 입력한 숫자만큼 증가합니다. * CARD 3.4 * NDZ ALPA MC1 MC2 MC3 MB MT 2 0.5 **3** 0 0 0 0 ◆ NDZ : Z 방향으로 생성할 요소의 수를 입력합니다. α = 0.5 : 요소의 길이를 일정하게 나눕니다. = 0.3 : 요소의 길이를 절점 I에서 J로 갈수록 점차 증가하며 나눕니다. = -0.3 : 요소의 길이를 절점 J에서 I로 갈수록 점차 증가하며 나눕니다. : 수정되지 않을 연속체 요소의 재료번호를 나타냅니다. ◆ MC : 수정되지 않을 Beam 요소의 재료번호를 나타냅니다. ◆ MB : 수정되지 않을 Truss 요소의 재료번호를 나타냅니다. ◆ MT ✔ Card 3.3에서 IMATC=1과 Card 3.4에서 MC1=3으로 지정한 것은 Block 3에서 AIG로 입력된 재료 3을 제외한 재료 1, 4가 각각 재료번호가 1만큼 증가하여 작용한다는 것을 뜻합니다. 따라서 Block 3에는 재료 2, 5, 3이 존재합니다.

* CARD 3.1 * BLNAME BLOCK4 => Block의 이름을 입력합니다. 제목과 마찬가지로 최대 60 Character 영문으로만 입력 가능합 니다. * CARD 3.2 * IBLNO Δ => Block의 번호를 입력합니다. * CARD 3.3 * I J LTYPE IMATC IMATB IMATT 4 5 0 6 0 0 ◆ I, J : 해당 Block을 구성하는 시작하는 절점(I)과 끝나는 절점(J)의 번호를 입력합니다. • LTYPE = 0 : Z방향으로 직선 형태로 요소가 생성됨을 나타냅니다. = 1 : Z방향으로 곡선 형태로 요소가 생성됨을 나타냅니다. : 연속체 요소의 재료번호를 입력한 숫자만큼 증가합니다. ♦ IMATC : Beam 요소의 재료번호를 입력한 숫자만큼 증가합니다. ♦ IMATB ◆ IMATT : Truss 요소의 재료번호를 입력한 숫자만큼 증가합니다. * CARD 3.4 * NDZ ALPA MC1 MC2 MC3 MB MT 0.3 **-3** 0 0 0 8 0 : Z 방향으로 생성할 요소의 수를 입력합니다. ♦ ND7 α = 0.5 : 요소의 길이를 일정하게 나눕니다. = 0.3 : 요소의 길이를 절점 I에서 J로 갈수록 점차 증가하며 나눕니다. = -0.3 : 요소의 길이를 절점 J에서 I로 갈수록 점차 증가하며 나눕니다. : 수정되지 않을 연속체 요소의 재료번호를 나타냅니다. MC : 수정되지 않을 Beam 요소의 재료번호를 나타냅니다. ◆ MB : 수정되지 않을 Truss 요소의 재료번호를 나타냅니다. • МТ !참고 : 만약 MC, MB, MT가 (-)기호를 가지고 있다면 이들 재료번호에 해당하는 요소는 생성되지 않습니다. ✔ Card 3.3에서 IMATC=6과 Card 3.4에서 MC1=-3으로 지정한 것은 Block 4에서 AIG로 입력된 재료 3은 작용하지 않고 연속체 재료 1, 4만 6만큼 증가하여 작용하는 것을 뜻합니다. 따라서 Block 4에는 재료 7, 10만이 존재합니다.

2.3.3 GEN-3D 실행하기

GEN-3D를 실행시키기 위하여 그림 6과 같이 *Run => Presmap => Gen-3D*를 선택합니 다.

SMAP-3D		
Run Plot Set	tup	Exit
Smap	•	1
Presmap	•	Presmap - 2D
Addrgn	×	Natm - 2D
Femap	•	Circle - 2D
Plotmesh	•	Presmap - 3D
Supplement 🕨		Cross - 3D
Load	•	Gen - 3D
User Application	•	Presmap - GP

그림 6. GEN-3D 프로그램 실행

그러면 그림 7과 같이 GEN-3D와 관련된 Input 및 Output 파일 이름 창이 나타납니다. Input 파일로 이미 준비된 GEN-3D Data 파일 (ZI.dat)과 2D 단면 Mesh 파일 (Group.Mes)을 입력하고 Output 파일 (ZI.out)을 입력한 다음 OK 버튼을 클릭합니다.

🔇 Input and Output File Name for GEN-3D	
Input File Name for GEN-3D	
ZI.DAT	Browse
Input File Name for 2D Mesh	
GROUP.MES	Browse
Output File Name	
PI.OUT	
<u> </u>	

그림 7. GEN-3D Input 및 Output 파일 입력 창

2.3.4 생성된 3D Mesh Plot 하기

GEN-3D 프로그램이 종료되면 그림 8과 같은 PRESMAP Mesh Plot Option 창이 나타납 니다. "Plot by PLOT_2D.3D" 선택 후 OK 버튼을 클릭하여 Plot-3D 프로그램을 실행합니 다.

그림 8. PRESMAP Mesh Plot Option.

그림 9와 같이 Plot-3D 창이 나타나면 파일 오픈툴바 버튼 ☞을 클릭하여 그림 10의 오 픈 파일 입력 창에서 자동 생성된 3D 입체 Mesh 파일 (ZI.out)을 선택합니다.

2.3.5 생성된 3D Mesh 파일 보기

GEN-3D 프로그램 실행 후 생성된 ZI.out (디폴트 output 파일 이름) 파일은 SMAP-3D 프로그램의 Input File 중의 하나인 Mesh File과 동일한 포맷으로 되어 있어 파일이름만 변경하여 Mesh File로 사용됩니다.

ZI.out 파일은 해석할 구조물을 나타내는 유한요소망의 좌표, 재료번호 등을 포함하고 있습니다. 자세한 설명은 SMAP-3D 사용자 매뉴얼의 Mesh File을 참고하기 바랍니다.

42114	40048		0	0															
NODAL	BOU	NDARY	CONDITI	ONS	&			COOF	RDINA	TES									
NODE	ISX IS	SY ISZ	IFX	IFY	IFZ	IRX	IRY I	RZ	IEX	IEY	IEZ		XC			YC		Z	С
1	0	0	0 1	1	1	1	1	1	1	1	1	1	9560)6E+01	.2	00000	DE+02	41	6666E+00
2	0	0	0 1	1	1	1	1	1	1	1	1	2	0000)0E+01	.2	00000	DE+02	.20	8219E-05
3	0	0	0 1	1	1	1	1	1	1	1	1	1	9560)6E+01	.2	00000	DE+02	.41	6667E+00
4	0	0	0 1	1	1	1	1	1	1	1	1	1	5612	24E+01	.2	00000	DE+02	12	5000E+01
5	0	0	0 1	1	1	1	1	1	1	1	1	1	8180)6E+01	.2	00000	DE+02	83	3333E+0
6	0	0	0 1	1	1	1	1	1	1	1	1	1	6666	57E+01	.2	00000	DE+02	41	6666E+0
7	0	0	0 1	1	1	1	1	1	1	1	1	1	6666	57E+01	.2	00000	DE+02	.37	2529E-0
8	0	0	0 1	1	1	1	1	1	1	1	1	1	6666	57E+01	.2	00000	DE+02	.41	6667E+0
42107	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.92	5000E+0
42108	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.10	9490E+02
42109	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.12	8316E+02
42110	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.14	8980E+0
42111	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	0E+00	.17	1480E+0
42112	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.19	5816E+0
42113	1	1	0 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.22	1990E+0
42114	1	1	1 1	1	1	1	1	1	1	1	1	.2	5000	00E+02	.0	0000	00+3C	.25	0000E+02
ELEMENT	INDEX																		
NEL	I1	I2	I3	8	I4	Ι5	I6		Ι7	18	8 MATC	C KS	KF	INTR	INTS	INTT	TBJ	WL	
1	6	1	. 2	2	7	765	724		725	766	5 3	0	1	2	2	2	.0000E	E+00	
2	7	2	3	8	8	766	725		726	767	3	0	1	2	2	2	.0000E	E+00	
3	8	3	g)	0	767	726		768	C) 3	0	1	2	2	2	.0000E	E+00	
4	12	4	. 5	5	13	804	763		764	805	5 3	0	1	2	2	2	.0000B	E+00	
5	13	5	6	5	14	805	764		765	806	5 3	0	1	2	2	2	.0000I	E+00	
6	14	6	7	,	15	806	765		766	807	3	0	1	2	2	2	.0000I	E+00	
7	15	7	8	8	16	807	766		767	808	3 3	0	1	2	2	2	.0000I	E+00	
8	16	8	ç,)	17	808	767		768	809) 3	0	1	2	2	2	.0000B	E+00	
40041	39466	39426	39467	7	0 4	41147	41107	4	1148	() 10	0	1	2	2	2	.0000	E+00	
40042	39427	39387	39428	3	0 4	41108	41068	3 4	1109	() 10	0	1	2	2	2	.0000	E+00	
40043	39389	39390	39431	L	0 4	41070	41071	4	1112	() 7	0	1	2	2	2	.00001	E+00	
40044	39432	39433	39474	1	0 4	41113	41114	4	1155	() 7	0	1	2	2	2	.00001	E+00	
40045	39515	39516	39557	7	0 4	41196	41197	4	1238	() 7	0	1	2	2	2	.00001	E+00	
40046	39679	39639	39680)	0 4	41360	41320) 4	1361	() 7	0	1	2	2	2	.0000]	E+00	
40047	39760	39720	39761	L	0 4	41441	41401	4	1442	() 7	0	1	2	2	2	.00001	E+00	
40048	39799	39759	39800)	0 4	41480	41440) 41	1481	() 7	0	1	2	2	2	.0000]	E+00	
OIDD -	0																		
CARD 9	0.6.1																		
NODV I	S NEL	VIS																	

	Image: Specific term Image: Specific term My Recent Image: Specific term	
	Desktop	
	My Documents	
	My Computer	
	File name: Qpen	
	Places Open as read-only	
	그린 10, Open 코이 이런 카	
	그님 10. Open 파일 입덕 장	
그림 11a	는 <i>x</i> 축과 <i>y</i> 축으로 회전시킨 원지반 토층 및 연암을 나타내는 3D 전체 유한요	소
망입니다.	Plot-3D의 주요기능은 1.2.5절을 참조하기 바랍니다.	
	그님 lla. 자농 생성된 3D 전체 유한요소망 (원지반 토증 및 연암)	

