SMAP®-3D

Structure Medium Analysis Program

3-D Static, Consolidation and Dynamic Analysis for Dry, Saturated and Partially Saturated Soils and Rock Mass

User's Manual Version 7.06

COMTEC RESEARCH

Copyright @2019 by COMTEC RESEARCH
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.
Printed in the United States of America.

LICENSE AGREEMENT

LICENSE: COMTEC RESEARCH grants to Licensee a non-exclusive,non-transferable right to use the enclosed Computer Program only on a single computer. The use of the Computer Program is limited to the Licensee's own project. Licensee may not use the Computer Program to serve other engineering companies or individuals without prior written permission of COMTEC RESEARCH. Licensee may not distribute copies of the Computer Program or Documentation to others. Licensee may not rent, lease, or network the Computer Program without prior written permission of COMTEC RESEARCH.

<u>TERM</u>: The License is effective as long as the Licensee complies with the terms of this Agreement. The License will be terminated if the Licensee fails to comply with any term or condition of the Agreement. Upon such termination, the Licensee must return all copies of the Computer Program, Software Security Activator and Documentation to COMTEC RESEARCH within seven days.

<u>COPYRIGHT:</u> The Licensed Computer Program and its Documentation are copyrighted. Licensee agrees to include the appropriate copyright notice on all copies and partial copies.

<u>USER SUPPORT:</u> COMTEC RESEARCH will provide the Software Support for the Registered Users for a period of 90 days from the date of purchase. User support is limited to the investigation of problems associated with the correct operation of the Licensed Computer Program. The Licensee must return the Registration Card in order to register the Licensed Computer Program.

<u>DISCLAIMER</u>: COMTEC RESEARCH has spent considerable time and efforts in checking the enclosed Computer Program. However, no warranty is made with respect to the accuracy or reliability of the Computer Program. In no event will COMTEC RESEARCH be liable for incidental or consequential damages arising from the use of the Computer Program.

<u>UPDATE POLICY:</u> Update programs will be available to the Registered Licensee for a nominal fee. The Licensee must return all the Original Distribution Diskettes and Software Security Activator to receive the update programs.

<u>GENERAL</u>: The State of California Law and the U. S. Copyright Law will govern the validity of the Agreement. This Agreement may be modified only by a written consent between the parties. COMTEC RESEARCH, 12492 Greene Ave., Los Angeles, CA 90066, U.S.A

Contents			
1. Intr	roduction		
1.1	Overview		
1.2	Features		
1.3	Applications		
2. Ins	talling SMAP-3D		
2.1	Minimum System Requirements 2-1		
2.2	Installation Procedure 2-1		
3. Run	nning Programs		
3.1	Introduction 3-1		
3.2	RUN Menu		
	3.2.1 SMAP 3-4		
	3.2.2 Mesh Generator 3-6		
	3.2.3 Load Generator		
	3.2.4 PlotXY Generator		
	3.2.5 Response Analysis		
	3.2.6 Command Line		
	3.2.7 Windows Explorer		
3.3	PLOT Menu 3-9		
	3.3.1 XY		
	3.3.2 MESH		
	3.3.3 RESULT 3-10		
3.4	SETUP Menu 3-11		
	3.4.1 General Setup		
	3.4.2 PLOT-XY Setup 3-13		
	3.4.3 PLOT-2D Setup		
	3.4.4 PLOT-3D Setup		
3.5	Manual Procedure to Run SMAP-3D 3-17		
3.6	Debugging SMAP-3D Main-Processing Program 3-18		
4. SM/	AP-3D User's Manual		
4.1	Introduction		
4.2	Project File 4-2		
4.3	Mesh File		
4.4	Main File		
4.5	Post File		
	4.5.1 PLOT-2D 4-95		
	4.5.2 PLOT-XY		

5. Grou	ıp Mesh User's Manual
5.1	Introduction
5.2	Group Mesh Generator 5-2
5.3	Group
5.4	Base Mesh
5.5	Segment
5.6	Modifying Finite Element Meshes 5-22
5.7	Entities
6. Bloc	k Mesh User's Manual
6.1	Introduction 6-1
6.2	Block Mesh Generator 6-2
6.3	Work Plane
6.4	Entities
6.5	Block
6.6	Modifying Finite Element Meshes 6-53
7. PRES	SMAP User's Manual
7.1	Introduction
7.2	PRESMAP-2D
	7.2.1 MODEL 1
	7.2.2 MODEL 2
	7.2.3 MODEL 3
	7.2.4 MODEL 4
7.3	NATM-2D
7.4	CIRCLE-2D
7.5	PRESMAP-3D
7.6	CROSS-3D
7.7 7.8	GEN-3D
7.8 7.9	PILE-3D. 7-89 PRESMAP-GP. 7-97
7.5	JOINT-2D
7.10	JOINT-3D
7.12	INTERSECTION

8.	ADD	RGN User's Manual
0	8.1 8.2 8.3	Introduction 8-1 ADDRGN-2D 8-3 ADDRGN-3D 8-21 PLEMENT Program
9.		
	9.1	Introduction
	9.2	EDIT 9-1
	9.3	XY
	9.4	CARDS
	9.5	SHRINK FILE
10	9.6	CUDSS 9-8 Conversion
10		
		Introduction
		Conversion to SMAP-3D Mesh File
- 11		AD User's Manual
		Introduction
	11.2	LOAD-2D
		11.2.1 LDTYPE=1 Pressure 11-3
		11.2.2 LDTYPE=2 Velocity 11-9
		11.2.3 LDTYPE=3 Initial Velocity 11-15
		11.2.4 LDTYPE=4 Acceleration
		11.2.5 LDTYPE=5 Transmitting Boundary 11-27
	11.3	LOAD-3D
		11.3.1 LDTYPE=1 Pressure
		11.3.2 LDTYPE=2 Velocity
		11.3.3 LDTYPE=3 Initial Velocity
		11.3.4 LDTYPE=4 Acceleration
		11.3.5 LDTYPE=5 Transmitting Boundary 11-81
12	2. XY	Gragh User's Manual
	12.1	Introduction
	12.2	New Graph
		Edit Dialog
		Existing Graph
		Excel XY Graph
		SMAP Result
	12.7	PlotXY Generator

4 Contents

13. PLOT-XY User's Manual
13.1 Introduction 13-1
13.2 Menus
14. PLOT-2D User's Manual
14.1 Introduction 14-1
14.2 Menus
15. PLOT-3D User's Manual
15.1 Introduction 15-1
15.2 Menus
15.3 Toolbars

Introduction

1.1 Overview

SMAP-3D is an advanced three-dimensional finite element computer program developed for the geometric and material nonlinear structuremedium interaction analysis. The program can be a powerful tool for the geomechanical analysis since it can solve static, consolidation and dynamic problems in dry, partially saturated or fully saturated soils and porous rock mass. The program has been designed to integrate the pre-, main-, and post-processors as shown at the end of this section.

1.2 Features

Features of SMAP-3D include:

- Three-dimensional isoparametric continuum element
 - Models soils, rocks and concrete media
 - Allows yielding and tension cut-off
 - Models dry, saturated and partially saturated porous media
- Joint element
 - Models faults, joints, and interfaces
 - Allows sliding and debonding

- Shell element
 - Models slabs, shear walls, tunnel linings, etc.
 - Considers membrane deformation, bending and torsional resistance
- Beam element
 - Models structural frames
 - Considers axial deformation, bending and torsional resistance
- Truss element
 - Models rock bolts and anchor bar
 - Allows yielding, buckling and post-buckling
- External loads
 - Pressure time history
 - Displacement/Velocity/Acceleration time history
 - Initial velocity
 - Gravity load
 - Base acceleration time history
- Special boundary condition
 - Skew boundary (Not Available)
 - Transmitting boundary
- Simulation of a sequence of excavation and construction
- Nonlinear material model
 - Von Mises model
 - Mohr-Coulomb model
 - In Situ Rock model
 - JWL Explosive Source model
 - Modified Cam-Clay model
 - Hyperbolic model
 - Engineering model
 - User defined model
- Large deformations
 - Use updated Lagrangian

1.3 Applications

Applications of SMAP-3D include:

- Dynamic analysis
 - Wave propagation
 - Ground motions due to tunnel blasting
 - Blast-induced liquefaction
 - Earthquake analysis
- Consolidation analysis
 - Foundation settlement
 - Earth dam stability during construction
 - Ground water flow through tunnel liner
- Rock-structure interaction analysis
 - Underground power plant chamber
 - Lined or unlined shafts and tunnels subjected to internal water pressures as well as external earth pressures
- Shallow and deep foundation analysis
- · Slope stability analysis
- Framed structural analysis
- Plate or shell structural analysis

Overview of SMAP-3D Program Structure

USER INPUT User prepares Mesh, Main, and Post Files according to

SMAP-3D User's Manual as described in Section 4.

PRESMAP Pre-processors to automatically generate Mesh File which

contains nodal coordinates, boundary constraints, and

element indexes.

SMAP-3D Main-processor executing Mesh and Main Files to compute

displacements, stresses and strains. Output files include:

CONTSS.DAT Stresses/strains in continuum
SHELMEF.DAT Shell member end forces
SHELSM.DAT Shell stresses/moments
BEAMSF.DAT Section forces in beam
TRUSS.DAT Stresses/strains in truss

DISPLT.DAT Nodal displacements, velocities

and accelerations

PLOT-XY PLOT-2D

PLOT-3D

Post-processors executing Post File for graphical output:

• Finite element mesh

Deformed shape

• Principal stress distribution

Section forces in beam elements

• Axial force/stress/strain in truss element

Contours of stresses and factor of safety

• 3D iso surface of stresses and strains

• Time histories of displacements/stresses/strains

Installing SMAP -3D

2.1 Minimum System Requirements

- Windows 64 bit operating system
- Intel Pentium 4 or AMD processors
- ✓ 4 GB Ram with 30 GB free space in Drive C
- SVGA monitor

2.2 Installation Procedure

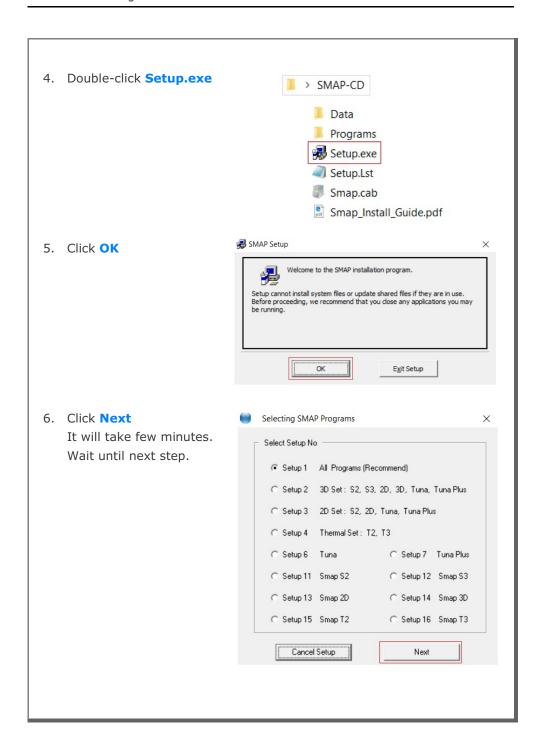
1. Uninstall if there are pre-existing SMAP programs.

To uninstall SMAP programs, remove following program using Add/Remove in Control Panel:

SMAP

Delete following files if they are existing:

C:\Program Files\Smap


C:\Windows\Setup1.exe

Rename or delete following folders if they are existing:

C:\SMAP

C:\SmapKey

- 2. Download SMAP-CD.exe from the Download section of www.ComtecResearch.com
- 3. Run SMAP-CD.exe SMAP-CD folder will be created with SMAP installation programs

Note:

Following two log files will be generated once finished:

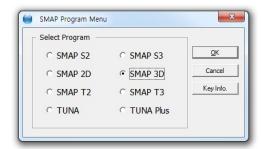
C:\SmapSetupAdd.dat

C:\SmapSetupLog.dat

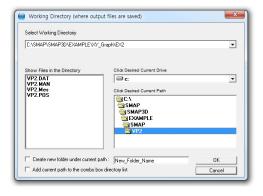
If Smap Installation is successful, delete these two files.

If Smap Installation is not successful, follow the instruction in SmapSetupAdd.dat.

If you still have problems with Smap Installation, send these two files to $\underline{info@ComtecResearch.com}$


Running Programs

3.1 Introduction


Generally, SMAP-3D consists of pre-, main-, and post-processing programs. Pre-processing programs are mainly used to automatically generate Mesh Files which will contain nodal coordinates, boundary conditions, and element indexes. Main-processing program of SMAP-3D is the one which computes static, consolidation and dynamic response of three-dimensional problems. Post-processing programs are used to show graphically the results from the main-processing program.

Accessing SMAP-3D Programs

- When it is the first time, you copy Smap.exe in C:\Ct \Ctmenu and setup a Shortcut to SMAP Icon on your computer desktop. Then You simply double-click SMAP Shortcut.
- 2. Select **SMAP-3D** radio button and then click **OK** button.

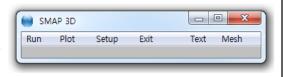
3. Next, you need to select Working Directory. Working Directory should be the existing directory where all the output files are saved. It is a good idea to have all your input files for the current project in this Working Directory. Click the disk drive, double-click the directory, and then OK button. Note that when you select Working Directory, a sub directory Temp is created automatically. All intermediate scratch files are saved in this sub directory Temp.

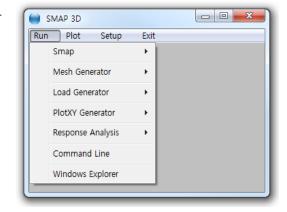
SMAP-3D Menu

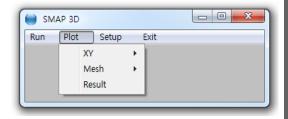
SMAP-3D provides following Main Menus; Run, Plot, Setup, Exit, Text and Mesh.

RUN executes main- and preprocessing programs and has following Sub Menus; Smap, Mesh Generator, Load Generator, PlotXY Generator, Response Analysis,

Command Line and


Windows Explorer.


PLOT executes XY, Mesh, and Result. Result is associated with post-processing programs to show graphically the computed results.


SETUP is mainly used to set plotting control parameters for PLOT-XY, PLOT-2D, and PLOT-3D and has the following Sub Menus; General, PLOT-XY, PLOT-2D and PLOT-3D.


EXIT is used to end SMAP-3D.

TEXT is used to edit Text files.

MESH is used to plot F. E. Mesh files.

3.2 RUN Menu

3.2.1 **SMAP**

Once you have prepared the input files (Mesh, Main, and Post) according to the SMAP-3D User's Manual in Section 4, you are ready to execute SMAP-3D main-processing program.

SMAP Menu has the following Sub Menus; Text Editor, PreExecute, and Execute.

TEXT EDITOR is used to create or modify the input file using Notepad.

PRE EXECUTE is used either to check the input file or to generate plotting information files. PRE EXECUTE is especially useful when you want to check input data to see whether there is any input error. It is also useful when you have finished EXECUTE but you want to add or modify the Post File for plot. In this case, you edit the Post File as you want, run PRE EXECUTE, and then run post-processing programs in PLOT menu.

EXECUTE executes SMAP-3D main-processing program.

SMAP-3D Output Files

Once you execute SMAP-3D, generally you can obtain following

output files:

CONTSS.DAT Contains stresses/strains in continuum element

SHELSF.DAT Contains shell member end section forces

SHELSM.DAT Contains shell stresses/moments

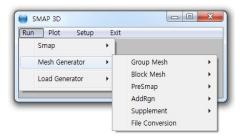
SHELRB.DAT Contains shell reinforcing bar axial stresses
BEAMSF.DAT Contains section forces in beam element
TRUSS.DAT Contains stresses/strains in truss element

DISPLT.DAT Contains nodal displacements

It should be noted that all of your output files are saved in the Working Directory that you specified at the beginning.

SMAP-3D Graphical Output

SMAP-3D Post-processing programs can generate the following graphical output:

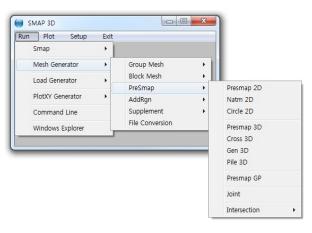

- Finite element mesh
- · Deformed shape
- Principal stress distribution
- · Section forces in beam element
- Extreme fiber stresses/strains in beam elements
- Axial force/stress/strain in truss element
- · Contours of stresses, strains and factor of safety
- 3D iso surface of stresses and strains
- Time histories of displacements/stresses/strains

Graphical output can be followed by running RESULT from PLOT Menu.

3.2.2 MESH GENERATOR

MESH GENERATOR is mainly used to model two and three dimensional finite element meshes that are used as Mesh File.

MESH GENERATOR Menu has the following Sub Menus; Group Mesh, Block Mesh, PreSmap, AddRgn, Supplement, and File Conversion.


GROUP MESH is a two-dimensional

CAD program specially designed to build group mesh which can be used to generate finite element mesh with the aid of program ADDRGN-2D. Section 5 in SMAP-3D Example Problems describes in detail about running Group Mesh.

BLOCK MESH is a three-dimensional CAD program specially designed to build block mesh which can be used to generate finite element mesh with the aid of program PRESMAP-GP. Section 6 in SMAP-3D Example Problems describes in detail about running Block Mesh.

PRESMAP menu includes two and three dimensional pre-processing programs to generate finite element meshes: Section 7 in SMAP-3D

Example Problems describes in detail about running PRESMAP Programs.

ADDRGN is the pre-processing program which has the following two basic functions: Combine two different meshes and modify existing meshes. Section 8 in SMAP-3D Example Problems describes in detail about running ADDRGN programs.

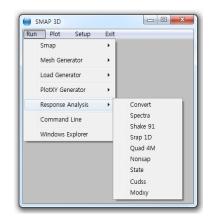
SUPPLEMENT contains supporting programs which are useful to prepare input data for pre- and main-processing programs. Section 9 in SMAP-3D Example Problems describes in detail about running SUPPLEMENT programs.

FILE CONVERSION is to convert Mesh File formats between different programs. IGES or FEMAP (Version 4.1- 4.5) can be converted to SMAP Mesh File format. Section 10 in SMAP-3D User's Manual describes in detail about running FILE CONVERSION program.

3.2.3 LOAD GENERATOR

LOAD GENERATOR includes the pre-processing program **LOAD-3D** which generates nodal values of external forces, specified velocities, initial velocities, accelerations and transmitting boundaries.

Section 10 in SMAP-3D Example Problems describes in detail about



3.2.4 PlotXY GENERATOR

PlotXY GENERATOR is the graphical user interface which is mainly used to generate or edit Simplified Time History and Simplified Snapshot of Card Group 12 in SMAP Post File.

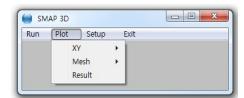
Section 12.7 in SMAP-3D User's Manual describes in detail about running PlotXY Generator program.

3.2.5 RESPONSE ANALYSIS

RESPONSE ANALYSIS runs following programs for seismic analysis:

Convert	Changing format of input earthquake acceleration data
Spectra	Constructing response spectra from acceleration history
Shake 91	Solving 1D seismic response by frequency domain analysis
Srap 1D	Solving 1D seismic response by finite element analysis
Quad 4M	Solving 2D seismic response by finite element analysis
Nonsap	Solving static and dynamic response of nonlinear systems
State	Plotting stress state on p-q space and octahedral plane
Cudss	Solving cyclic undrained direct simple shear for PM4Sand
Modxy	Modifying each XY data curve separately for PLOT-XY
	All Examples enclosed in the directory C:\Smap\Response

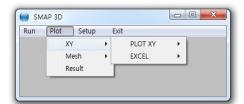
3.2.6 COMMAND LINE


COMMAND LINE opens Windows Command Prompt at the current Working Directory. You can use a keyboard to navigate, access, and modify files and folders by entering commands. For example, COMMAND LINE is used when executing manually SMAP main solvers.

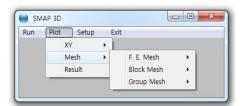
3.2.7 WINDOWS EXPLORER

WINDOWS EXPLORER opens Windows File Explorer at the current Working Directory. You can use a mouse to navigate and manage the drives, folders and files on your computer.

3.3 PLOT Menu


PLOT Menu is to show graphically XY graph, Mesh and Computed Result.

3.3.1 XY


XY graph can be displayed

by PLOT-XY or EXCEL. Section 11 in SMAP-3D Example Problems describes in detail about running XY graph.

3.3.2 MESH

MESH has following Sub Menus; F. E. Mesh, Block Mesh and Group Mesh.

F. E. Mesh is used to open or create Finite Element Mesh File.

Block Mesh is used to open or build Block Mesh. Section 6 in SMAP-3D Example Problems describes in detail about running Block Mesh.

Group Mesh is used to open or build Group Mesh. Section 5 in SMAP-3D Example Problems describes in detail about running Group Mesh.

3.3.3 RESULT

Once you finished executing SMAP-3D main-processing program, you need to run post-processing programs to show graphically numerical results.

PLOT Menu contains PLOT-XY, PLOT-2D, and PLOT-3D.

PLOT-XY reads Card 12 in Post File and plots time histories of stress/strain/displacement and snapshots of stress/strain/displacement vs. distance. Refer to PLOT-XY User's Manual in Section 13.

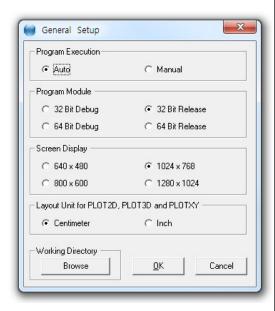
PLOT-2D reads Card 11 in Post File and plots contours of continuum stress/strain, beam section forces, truss axial force/stress/strain, principal stress vectors, and deformed shapes. Refer to PLOT-2D User's Manual in Section 14.

PLOT-3D reads Mesh File and Smap Output Files and with no input for Post File, plots contours of stress/strain/displacement, iso surface, principal stress vectors, and deformed shapes. Refer to PLOT-3D User's Manual in Section 15.

Note: When you first plot results, do not check the check box in Skip Data Processing. When you replot results, however, you can check the check box to skip intermediate data processing. This will save time and keep modified output data.

3.4 SETUP Menu

You need to run SETUP Menu


- To specify SMAP-3D main-processing program module.
- To adjust scales of graphical outputs from PLOT-XY, PLOT-2D, and PLOT-3D

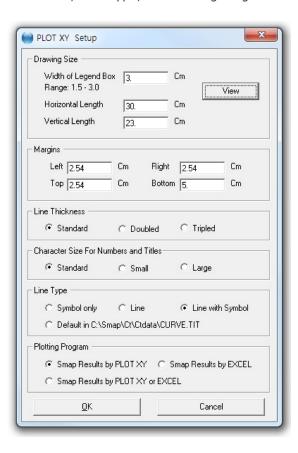
SETUP Menu has four Sub Menus; General, PLOT-XY, PLOT-2D, and PLOT-3D

3.4.1 General Setup

General Setup has five different items; Program Execution, Program Module, Screen Display, Layout Unit, and Working Directory.

Program Execution has two options; Auto and Manual. For Manual Execution, refer to Section 3.5 in User's Manual.

Program Module has four options. 32 Bit Debug, 32 Bit Release, 64 Bit Debug, and 64 Bit Release. Debug program modules run slower but gives more detailed information when run time errors occur. For most cases, 32 Bit Release is recommended. 64 Bit Modules are designed to run large problems.


Screen Display has four options; 640x480, 800x600, 1024x768, and 1280x1024. This will affect the size of child window in PLOT-XY and PLOT-2D.

Layout Unit is used for PLOT-XY, PLOT-2D, and PLOT-3D. You can select either Centimeter or Inch in specifying plot scales and dimensions.

Working Directory is to change the current working directory. When you click the Browse button, Working Directory dialog will be shown so that you can select new directory.

3.4.2 PLOT-XY Setup

PLOT-XY Setup is mainly used to specify scales and dimensions of post processing program PLOT-XY. It has six different items; Drawing Size, Margins, Line Thickness, Character Size, Line Type, and Plotting Program.

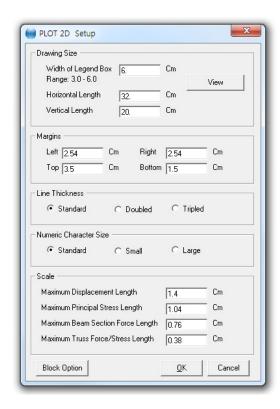
Drawing Size controls the size of output. Once you specify Legend Box Width, Horizontal and Vertical Length, you can click **View** button to see the scaled layout.

Margins is used to shift the drawing area. Left margin is the distance from the left edge of printer page to the left frame line. In the similar way, you can specify Top, Right, and Bottom margins.

Line Thickness specifies the thickness of lines. This option is not used.

Character Size for Numbers and Titles specifies the size of characters for numbers and titles. It has three options; Standard, Small, and Large.

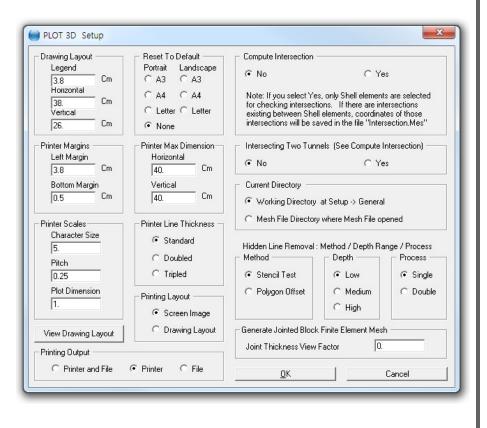
Line type is used to specify default line type and has four options; Symbol only, Line, Line with Symbol, and Default in C:\ Smap\Ct\Ctdata\Curve.tit.


Plotting Program is used to specify default program to plot Smap results. It has three options; PLOT-XY, EXCEL, and PLOT-XY or EXCEL. Last option is to select either PLOT-XY or EXCEL at the time you plot results.

3.4.3 PLOT-2D Setup

PLOT-2D Setup is mainly used to specify scales and dimensions of post processing program PLOT-2D. It has six different items; Drawing Size, Margins, Line Thickness, Numeric Character Size, Scale and Block Option. The first four items are much similar to those described in PLOT-XY Setup.

Scale specifies Maximum Displacement Length, Maximum Principal Stress Length, Maximum Beam Section Force Length, and Maximum Truss Force/Stress Length, which will be shown on PLOT-2D.


Block Option specifies options to generate either PRESMAP Output or Block Diagram.

3.4.4 PLOT-3D Setup

PLOT-3D Setup is mainly used to specify scales and dimensions of post processing program PLOT-3D. In addition, it can compute intersection of shell elements and intersecting two tunnels. And It can also generate jointed block finite element meshes. It has thirteen different items; Drawing Layout, Printer Margins, Printer Scales, Reset To Default, Printer Max Dimension, Printer Line Thickness, Printing Layout, Printing Output, Compute Intersection, Intersecting Two Tunnels, Current Directory, Hidden Line Removal and Generate Jointed Block Finite Element Mesh.

Refer to descriptions shown in the PLOT-3D Setup dialog.

3.5 Manual Procedure to Run SMAP-3D

Occasionally, you need to execute SMAP-3D main-processing program manually to see what is going on each step, specially when terminated due to some errors.

Method 1

- 1. Select Setup -> General -> Manual in Program Execution
- 2. Select Run -> Smap -> Execute
- 3. Select Smap project file when displaying file open dialog
- 4. Now Smap is running on Windows Command Line
- 5. Type Enter key to continue to next step or Control C to stop

Method 2

- 1. Select Run -> Command Line
- 2. Change to Temp sub directory

Create Temp sub directory if not existing.

Type MD Temp

Then change to this sub directory.

Type CD Temp

Now, the files in the Working Directory can be accessed by prefixing "..\" to the file name.

- 3. Type C:\Smap\Ct\Ctbat\Smap3D
- 4. Type ...\VP1.Dat to access input file in Working Directory, for example
- 5. Type Enter key to continue to next step or Control C to stop

3.6 Debugging SMAP-3D Main-Processing Program

Debug information would be helpful in the following cases:

- Having run time errors
- Extracting convergence
- Checking elapsed time

In order to get debug information, you need to modify the file "Smap 3D.dat" in the directory C:\Smap\Ct\Ctdata\Debug

1, 11, 1, 1, 1, 100, 90 IDEBUG, NCLDEB, IOUTDEB, ICONVER, NELDEB, NO_MAX, NO_RESTART

This "DEBUG.DAT" file allows listing of status with elapsed time information while running main process of SMAP programs. This is the very useful features to see where it spends most time and where it stops.

IDEBUG = 0: Do not print debug information.

1: Print debug information. Refer to IOUTDEB.2: Print debug information in each individual files based on NO_MAX and NO_RESTART and

save in C:\SMAP\ \overline{S} MAP2D\DEBU \overline{G} for SMAP-2D and in C:\SMAP\SMAP3D\DEBU \overline{G} for SMAP-3D

NCLDEB : Ending cycle number.

No printing debug information after NCLDEB.

IOUTDEB = 0 : Debug information on screen.

1 : Debug information on file, Smap_3D.deb in Working Directory\Temp

ICONVER = 0 : Do not print convergence information.

1 : Print the ratio of displacement increment to current displacement (DU/U)

co darrono aropradomento (20,0)

NELDEB = -1: Do not print element information in element level operation.

= 0 : Print current element number in element

level operation.

> 0 : Print debug information for the element number NELDEB in element level operation.

NO_MAX : Maximum number of individual files.
Used for IDEBUG = 2.

NO RESTART : Restart number for individual file

once it reaches NO_MAX. Used for IDEBUG = $\overline{2}$.

SMAP-3D User's Manual

4.1 Introduction

To run SMAP-3D main-processing program, you need to prepare a Project File which contains Mesh File name, Main File name, and Post File name.

Mesh File contains nodal coordinates, boundary conditions, element indexes and material property numbers. This Mesh File is normally generated by Mesh Generator programs.

Main File contains all the other data required for the three-dimensional numerical analysis of static, consolidation, or dynamic problems.

Post File contains information which is used to show graphically the results from the main-processing program.

4.2 Project File

Project File is a collection of names of Mesh, Main, and Post Files with the following text format:

Mesh File Name

Full path of Mesh File

Main File Name

Full path of Main File

Post File Name

Full path of Post File

As an example, a Project File **VP2.Dat** can be written as:

Mesh File Name

D:\Example\VP2.Mes

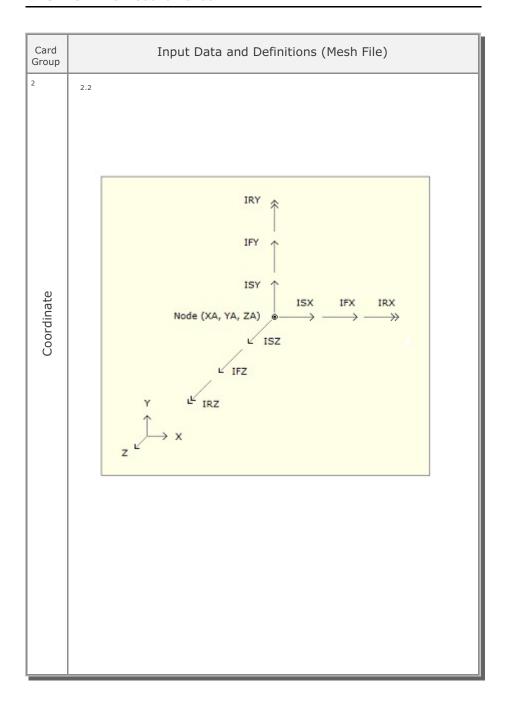
Main File Name

D:\Example\VP2.Man

Post File Name

D:\Example\VP2.Pos

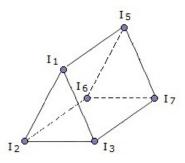
12	Mesh	Eilo
4.5	Mesn	гпе

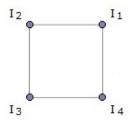

Mesh File contains nodal coordinates, boundary conditions, element indexes and material property numbers. This Mesh File is normally generated by Mesh Generator programs.

To plot Mesh File, select Mesh in Plot menu.

Mesh File

Card	Input Data and Definitions (Mesh File)		
Group	input buta and benintions (Mesh File)		
1	TITLE [Character string]		
	TITLE Project title		
	LABEL1 [Character string]		
	LABEL1 Label for Card 1.3		
rmation	NUMNP, NCONT, NBEAM, NTRUSS		
General Information	NUMNP Total number of nodal points NCONT Total number of continuum elements NBEAM Total number of beam elements NTRUSS Total number of truss elements		

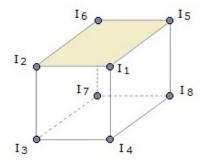

Card Group	Input Data and Definitions (Mesh File)
2	LABEL2A [Character string] LABEL2B [Character string] LABEL2A Label for coordinate LABEL2B Label for Card 2.2
Coordinate	NODE, ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, NUMNP IRZ, IEX, IEY, IEZ, XA, YA, ZA Cards
Coor	ISX Skeleton X DOF (Degree of Freedom) ISY Skeleton Y DOF ISZ Skeleton Z DOF
	IFX X DOF for relative pore fluid motion IFY Y DOF for relative pore fluid motion IFZ Z DOF for relative pore fluid motion
	IRX Rotational DOF about X axis for bending IRY Rotational DOF about Y axis for bending IRZ Rotational DOF about Z axis for bending
	IEX Slip X DOF IEY Slip Y DOF IEZ Slip Z DOF
	ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ, IEX, IEY, IEZ = 0 Free to move in specified direction = 1 Fixed in specified direction


Card Group	Input Data and Definitions (Mesh File)
3 (dı	LABEL3A [Character string] LABEL3B [Character string] LABEL3A Label for continuum element LABEL3B Label for Card 3.2
Continuum Element (If NCONT = 0, skip this card group)	NEL II, II, II, II, III III NEL II, II, II, III III NEL II, II, III III NEL IIII NEL IIIII NEL IIII NEL IIIII NEL IIII NEL IIIII NEL IIII NEL

Card	Total Data and Defailing (Mark File)		
Group	Input Data and Definitions (Mesh File)		
3	3.2		
	KS = -1 Element has high explosive solid phase = 0 Element has solid phase 3D continuum = 1-6 Element has joint and KS represents face designation number. Refer to description in the following page. = 15 Element has SHELL element		
Element	KF = 0 Element has fluid phase = 1 Element has no fluid phase		
Continuum Element	INTR Use INTR = 2 INTS Use INTS = 2 INTT Use INTT = 2		
	TBJWL Detonation time (Required for KS = -1) Time from initial detonation to the detonation of this element.		

Wedge Element $(I_4 = I_8 = 0)$

Quadrilateral Shell Element ($I_5 = I_6 = I_7 = I_8 = 0$)


Triangular Shell Element $(I_4 = I_5 = I_6 = I_7 = I_8 = 0)$

loint	Flement	Face	Designation
JUILIE		I acc	Designation

KS	I_1 '	I ₂ '	I ₃ '	I ₄ '
1	5	6	2	1
2	6	7	3	2
3	7	8	4	3
4	8	5	1	4
5	1	2	3	4
6	6	5	8	7

For KS = 1

It should be noted that the thickness of joint element is determined Not by gap between two faces (I $_{5}$ I $_{6}$ I $_{2}$ I $_{1}$ and I $_{8}$ I $_{7}$ I $_{3}$ I $_{4}$),

But by joint thickness (t) specified in Card 5.3.2.4.11 in Main File input The nodal coordinates of I_5 , I_6 , I_2 , I_1 represent the Location of Joint Face but nodal coordinates of $I_{\rm 8}$, $I_{\rm 7}$, $I_{\rm 3}$, $I_{\rm 4}$ are used only For Plotting Purpose

Card Group	Input Data and Definitions (Mesh File)
4	LABEL4A [Character string] LABEL4B [Character string] LABEL4A Label for beam element LABEL4B Label for Card 4.2
Beam Element (If NBEAM = 0, skip this card group)	NBEAM Cards NEL, I, J, K, MSEC

Input Data and Definitions (Mesh File)
Input Data and Definitions (Mesh File) 5.1 LABEL5A [Character string] LABEL5B [Character string] LABEL5A Label for truss element LABEL5B Label for Card 5.2 5.2 NTRUSS [NEL, I, J, MATT, K, NELPI, NELPJ

4.4 Main File

Mesh File in the previous section 4.3 contains the geometrical data of the structure to be analyzed.

Main File contains all the other data required for the three-dimensional numerical analysis of static, consolidation, or dynamic problems.

Main File consists of ten different card groups:

- System Control and Title
- Analysis Type
- Computational Parameters
- Coordinate
- Continuum Element
- Beam Element
- Truss Element
- Element Activity
- Loads
- Requested Output

Card Group	Input Data and Definitions (Main File)
	VERSION Version No (Current Version = 7.05)
	IBATCH, IVMDK, IOPTDB, ISYMSOL
Version No, System Control and Title	IBATCH = 0 Interactive terminal job = 1 Batch job (not available) = 2 Generate Mesh File PlotMesh.Mes (This will not execute input) = -1 Terminal interactive job with beep sound when the calculation is finished = -11 Same as IBATCH =-1 except long beep sound and character based screen display < -11 Same as IBATCH =-11 except no display IVMDK = 0 Use hard disk to store internal variables = 1 Use addressable memory to store internal variables IOPTDB = 0 Use single precision to solve equation = 1 Use double precision to solve equation ISYMSOL = 0 Program determines solution scheme = 1 Impose symmetric solution scheme = 2 Impose unsymmetric solution scheme
	LTITLE LTITLE Main title (Max = 80 characters)
	LSUBTL Subtitle (Max = 80 characters)

Card Group	Input Data and Definitions (Main File)		
2	NTCSF, NLNR	, NGEN, IQUAD, NTEMP, ITDIS, MODAL	
	= 2 = 3	Static analysis Consolidation analysis Dynamic analysis (Implicit method) Dynamic analysis (Explicit method) Mode superposition analysis For NTCSF = -5, computes only natural frequencies and mode shapes	
		Linear elastic material Nonlinear material	
Туре		Small displacement Large displacement (Updated Lagrangian)	
Analysis Type	IQUAD = 0 = 1	No automatic generation Automatic generation of quadratic elements All linear continuum elements are automatically transformed into quadratic elements. For IQUAD = 16, transformed into 16 node hexahedral elements.	
		Thermal expansion is not considered Thermal properties and element temperatures are read from input file ELTEMP.DAT that should be located in working directory. See Table in the next page	
	ITDIS = 0 = 1	Output motions when base acceleration applied Relative displacement & Relative velocity Total displacement & Total velocity	
	= 1	Modal analysis options for NTCSF = 5 or -5 Subspace iteration method Determinant search method Jacobi iteration method	

Input File ELTEMP.DAT

Card Group	Input Data and Definitions (Main File)			
	1.1 TITLE			
	TITLE Project title (Max = 80 characters)			
	LABEL 1 [Character string]			
	LABE	EL 6 [Character string]		
LABEL 1-6 Labels for Card 2.2				
Thermal Property	2.2 2.2.1 MATNO, MODEL			
Ė	For Each Material	MATNO Material property number If MATNO = -1, end of Card 2.2		
		MODEL = 1 Constant thermal expansion = 2 Step thermal expansion = 3 Porosity rate dependent expansion		
	For E	Note MODEL = 2 and 3 are not available		
		T_o, E_da		
		T_o Freezing temperature (Degree C) E_da Anisotropic expansion parameter (ξ)		

Input File ELTEMP.DAT

		Input Data and Definitions (Main File)		
Thermal Property Thermal Property	For Each Material	Input Data and Definitions (Main File) 2.2.3 E_u, V_u, E_f, V_f E_u Unfrozen Young's modulus V_u Unfrozen Poisson's ratio E_f Frozen Young's modulus V_f Frozen Poisson's ratio 2.2.4 Required only for MODEL = 1 Alpha_c Alpha_c Coefficient of thermal expansion (L/L/Temperature) 2.2.5 Required only for MODEL = 2 Strain_m, dT_o Strain_m Maximum expansive strain dT_o Strain_m distributed over dT_o (Deg C) 2.2.6 Required only for MODEL = 3 RateN_m, T_m, g_T, Z_eta RateN_m Maximum porosity rate T_m Temperature (Deg C) at RateN_m g_T Temperature gradient (Deg C/m) at RateN_m		
		Z_eta Stress parameter, ζ, in stress unit (Mpa) used for reducing porosity rate		

Input File ELTEMP.DAT

Card Group	Input Data and Definitions (Main File)				
3	3.1				
	LABEL 2 [Character string]				
	LABEL 1 Label for Card 3.2				
_ 	3.2				
II⊾	TIME;				
Temperature Profile, Can be repeated for each TIME	TIME, Time. TIME, should be 0.0 for initial state If TIME, = -1.0, end of data				
eate	3.3				
rep	LABEL 3 [Character string]				
Can be	LABEL 3 Label for Card 3.4				
file, (3.4				
Prof	NELNO, MATNO T _{top} T _{bot} T _{/x} T _{/y} T _{/z}				
ture					
pera	NELNO Element number				
Tem	NELNO Element number If NELNO = -1, end of Card 3.4				
·					
	MATNO Material property number. T _{top} Temperature on top surface				
	T _{bot} Temperature on bottom surface				
	T, Temperature gradient in x direction T, Temperature gradient in y direction				
	T _{/z} Temperature gradient in z direction				

Card Group	Input Data and Definitions (Main File)		
3	Cycles and Time Ste NCYCL, DT, NDTGI KRANGE	ep R, NITER, MNEWRP, TOLER, IRANGE,	
	NCYCL	Number of total solution cycles	
	DT	Global time step: Duration of each cycle	
Computational Parameters	NDTGR	Number of time step group (Max=100) If NDTGR = 0, constant time steps are used. For NDTGR > 0, NLNR=1 should be specified in Card Group 2.1	
	NITER	Number of maximum iteration (Iteration is available for NTCSF = 1)	
	MNEWRP = 0 = 1 =-1	·	
	TOLER	Tolerance for convergence, defined as the ratio of displacement increment to current displacement (Default TOLER=0.001)	
	IRANGE = 0 = 1 = 2	NITER is applied throughout NCYCL NITER is applied based on Cycle No NITER is applied based on Time	
	KRANGE = 0 = 1 = 2	Stiffness update option is not used Stiffness update option based on Cycle No Stiffness update option based on Time	

Card Group		Input Data and Definitions (Main File)			
3	:	If NDTGR = 0, go to Card Group 3.1.3 ICYCLTIME ICYCLTIME = 0 Selection of time step is based on Cycle No = 1 Selection of time step is based on Time			
	3.1.2	3.1.2.1			
	3.1.2	STIME, ITYPE			
ameters		STIME Starting Cycle No for ICYCLTIME = 0 Starting Time (t_o) for ICYCLTIME = 1 For the first time group, use STIME = 0			
Computational Parameters	Each Time Step Group	ITYPE = 0 Constant time step = 1 Constant log time step = 2 Arbitrary specified time step			
Compu		If ITYPE = 0 DT			
	For Eac	DT Time step $\frac{\text{If } \text{ITYPE} = 1}{\text{DT}_1, \text{ CLDT}}$			
		DT ₁ Starting time step CLDT Constant log time step CLDT = $\log_{10}(t_{i+1}-t_o) - \log_{10}(t_i-t_o)$			
		If ITYPE = 2 NUMDT DT ₁ ,, DT _{NUMDT}			
		NUMDT Number of time step $DT_1,, DT_{NUMDT}$ Listing of specified time steps			

Card Group		Input Data and Definitions (Main File)
3	3.1.3	If IRANGE = 0, go to Card Group 3.1.5 NRANGE NRANGE Number of specified ranges where NITER is applied (Max=100)
Computational Parameters	For Each Range	SFTIME, SLTIME SFTIME Starting Cycle No for IRANGE = 1 Starting Time for IRANGE = 2 SLTIME Ending Cycle No for IRANGE = 1 Ending Time for IRANGE = 2

Card Group	Input Data and Definitions (Main File)		
3 3.1.5	If KRANGE = 0, go to Card Group 3.2 NRANGE NRANGE NRANGE Number of specified ranges where stiffness update option is applied (Max=100)		
Computational Parameters For Each Range	SFTIME, SLTIME, NST SFTIME Starting Cycle No for KRANGE = 1 Starting Time for KRANGE = 2 SLTIME		

Card		Input Data and Definitions (Main File)			
Group					
3	Numerical	Time-Integration and Artificial Viscosity			
		3, go to Card Group 3.3 TA, GAMA, CQ, CL, F1, F3, RD, NTMODE			
	TETA BETA GAMA	θ See Table 1 β See Table 1 γ See Table 1			
ırameters	CQ CL	Quadratic artificial viscosity coefficient Linear artificial viscosity coefficient			
Computational Parameters	F1 F3	First natural frequency Third natural frequency or Predominant frequency of input motion			
Compu	RD	For NTCSF = 5, RD as critical damping ratio. For NTCSF = 3 and RD > 0, program first computes F1 and F3 and then automatically reruns. Actual RD is defined in element material input sections.			
	Note:	Both F1 and F3 are used to compute Rayleigh mass and stiffness proportional damping coefficients.			
	NTMODE	Number of mode shapes to be considered			
	Note:	If NTCSF = 4, only CQ and CL are used			

Card Group		Input Data and Definitions (Main File)
3	3.3	If NTCSF = 4, go to Card Group 4 NCLMCH NCLMCH = 0 Do not change calculation mode > 0 Change calculation mode at cycle NCLMCH
Computational Parameters	Calculational Mode Change	If NCLMCH = 0, go to Card Group 4 NTCNEW, DTNEW TETANEW, BETANEW, GAMANEW, CQNEW, CLNEW, F1NEW, F3NEW, RDNEW, NTMODENEW NTCNEW New value of NTCSF after NCLMCH DTNEW New value of DT after NCLMCH TETANEW, BETANEW, GAMANEW, CQNEW, CLNEW, F1NEW, F3NEW, RDNEW, NTMODENEW are new values of Card 3.2 after NCLMCH, respectively

Table 1 Values of β and θ for γ = 1/2 *

Integration Method	β	θ
Explicit second central difference	0	1.0
Fox-Goodwin	1/12	1.0
Linear acceleration	1/6	1.0
Newmark's constant acceleration	1/4	1.0
Wilson	1/6	2.0
Stiff linear acceleration	1/6	1.5

 $^{*\}gamma = 1/2$ indicates no damping

 $\gamma > 1/2$ introduces numerical damping and β =(γ + 1/2) 2 / 4

For more information, refer to Ghaboussi and Wilson, "Variational Formulation of Dynamic of Fluid Saturated Porous Elastic Solids," ASCE Engineering Mechanics Journal, August 1972

Card Group		Input Data and	Definitions (Main File)
4	NUMNP		
	NUMNP	Total number	of nodal points
	cmfac, scf	:P	
	CMFAC	Coordinate mu (Use CMFAC =	ltiplication factor = 1.0)
Coordinate	SCFP Stress conversion factor for converting prunits to Pascals		
Coord		Note SCFP is used for nonlinear pore fluid and JWL model	
		Stress Unit kg/cm² t/m² kg/m²	<u>SCFP</u> 98066.5 9806.65 9.807
		Newton/cm ² bar psi	10000 100000 6895
		ksi psf MPa	6.895 x 10 ⁶ 47.88 1000000

4 4.4 4.4.1 NBNODE, NCLBCH, IFLCOD NBNODE Number of nodes where boundary codes are changed NCLBCH Cycle No where boundary codes are changed IFLCOD = 0 Read Card 4.4.2 here = 1 Read Card 4.4.2 from file NewBcode.dat starting with NBNODE as first card	Card Group	Input Data and Definitions (Main File)
Section If NBNODE = 0, go to next Card Group 4.5	Group 4 4.4	NBNODE, NCLBCH, IFLCOD NBNODE Number of nodes where boundary codes are changed NCLBCH Cycle No where boundary codes are changed IFLCOD = 0 Read Card 4.4.2 here = 1 Read Card 4.4.2 from file NewBcode.dat starting with NBNODE as first card If NBNODE = 0, go to next Card Group 4.5 A.4.2 NBNODE IRX ₁ , ISX ₁ , ISY ₁ , ISZ ₁ , IFX ₁ , IFY ₁ , IFZ ₁ , NBNODE Refer to Card Group 2.2 in Mesh File

Card	Input Data and Definitions (Main File)			
4	Repeating Nodes	A.5.1 NREPEAT NREPEAT Number of repeating nodes If NREPEAT = 0, go to next Card Group 5.1 4.5.2 NODER, NODEP NREPEAT Cards L NODER Repeating node NODEP Parent node Note: Repeating node NODER shares the same degrees of freedom as those of the corresponding parent node NODEP		

Card Group	Input Data and Definitions (Main File)			
	Material Property Data		Input Data and Definitions (Main File) NC NTNC Number of material property set for continuum element 5.3.2.0 MATNO, MATNP MATNO Material number MATNP Parent material number MATNP WATNO will duplicate MATNP If MATNO will duplicate MATNP If MATNP > 0, go to next property set. 5.3.2.1 TITLE TITLE Material name (Max 80 characters) 5.3.2.2 POR, GW, G, PFMIN, DAMP, ICST POR Initial porosity (n _o) GW Unit weight of water at () c G Gravity constant (g) PFMIN Minimum fluid pressure (Not used) DAMP Initial critical damping ratio ICST = 0: Lumped mass = 1: Consistent mass (Default)	
			NF = 0 Linear fluid and solid grain = 1 Nonlinear fluid and solid grain	

Card Group	Input Data and Definitions (Main File)				
	Fluid and Solid Grain Property (NF = 0)	Input Data and Definitions (Main File) 5.3.2.3.1 For NF = 0 (Linear Fluid and Solid Grain) RK ₁ , BKG, SGG, BKF, SGF, NK, RK ₁ FAC, NPHNO RK ₁ Darcy's coefficient of permeability BKG Bulk modulus of grain SGG Specific gravity of solid grain BKF Bulk modulus of pore fluid SGF Specific gravity of pore fluid NK = 0 Isotropic permeability = 1 Anisotropic permeability RK ₁ FAC Multiplication factor for RK ₁ , applied during NGSTEP NPHNO Permeability intensity history number in Card Group 9.2.3 For NK = 1 a _{xxx} , a _{yy} , a _{zz} , a _{xy} , a _{xz} , a _{yz} a _{ij} Permeability component (k _{ij} = a _{ij} ·RK ₁)			

Card Group	Input Data and Definitions (Main File)
Continuum Element Fluid and Solid Grain Property (NF = 1)	For NF = 1 (Nonlinear Fluid and Solid Grain) Permeability Property NP, RK1, RK2, RK3, NK, RK1FAC, NPHNO NP = 0 Constant permeability

Card Group	Input Data and Definitions (Main File)					
5	5.3	5.3.2.3.2				
Group 5	= 1)	Solid Grain F NG, BKG, S NG = 0				
Continuum Element	Fluid and Solid Grain Property (NF	PB	loading wave velocity to peak particle velocity. Generally equal to about 1.5 for most rocks and minerals* Threshold pressure beyond which material tends to behave like a fluid (*) Not used for NG = 0			

Table 2 Permeability Constants

NP	Equivalent Permeability k (length/time)	Input Variables
0	k = RK ₁	RK ₁ = Darcy's coefficient of permeability (length/time) RK ₂ , RK ₃ not used
1	$k = 10^{RK_1 (n - RK_2)}$	RK ₁ = Slope of n vs. log k line in units log (length/time). RK ₂ = Porosity corresponding to k=1.0 RK ₃ = Not used
2	$k = \frac{RK_1}{1 + \frac{RK_3}{Y_f} \sqrt{RK_1} \dot{w}_i }$	$RK_1 = \text{Darcy's coefficient of} \\ \text{permeability (length/time)} \\ = \frac{Y_f}{a} \\ \\ RK_2 = \text{Not used.} \\ \\ RK_3 = \text{Ward's coeff. for turbulent flow} \\ \\ \beta_f = b k^{1/2} \\ \\$
3	$k = \frac{K_{I}}{1 + \frac{RK_{3}}{Y_{f}} \sqrt{K_{I}} \dot{w}_{i} }$ $K_{I} = 10^{RK_{1} (n-RK_{2})}$	RK_1 See $NP = 1$ RK_2 See $NP = 1$ RK_3 See $NP = 2$

Card Group	Input Data and Definitions (Main File)						
5	5.3	5.3.2.3.2					
		Pore Fluid Property NW, BKF, SGF, SO, GAMMA, PAO, T					
Continuum Element	Fluid and Solid Grain Property (NF $= 1$)	NW = 0	Constant fluid modulus Nonlinear modulus (Fresh water) Nonlinear modulus (Sea water) Initial bulk modulus of pore fluid Initial specific gravity of pore fluid Initial degree of saturation* $SO \neq 1.0$ invokes partial saturation model Ratio of heat capacity *, $\gamma = C_p/C_v$ Initial pore air pressure (Absolute)* Not used (*) Not used for NW = 0				

Card Group		Input Data and Definitions (Main File)			
5	5.3	5.3.2.4			
		MODELNO, D	SRNMA	X, MAXCYCL, Ko, NEHNO, NRHNO	
Continuum Element	Material Property	= = = = = = = = = = = = = = = = = = =	= 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10 = 11 = 12 = 13 = 14 = 15 = 16 = 17 = 18	Elastic Model Von Mises Model Mohr-Coulomb Model In Situ Rock Model Generalized Hoek and Brown Model Advanced Elasto-Plastic Model (N.A.) Single Hardening Plastic Model (N.A.) JWL High Explosive Model Modified Cam Clay Model Engineering Model Joint Model Duncan and Chang Hyperbolic Model Elastic Model for SHELL element User Defined Model PM4Sand Model (N.A.)	
		DSRNMAX =	= 0.0	Do not apply strain sub cycling Maximum strain sub increment	
		MAXCYCL	Maxir	num number of strain sub cycling	
		Ko NEHNO NRHNO	Young histor Eleme	icient of earth pressure at rest gs modulus multiplication factor ry number in Card Group 9.2.3 ent volume multiplication factor ry number in Card Group 9.2.3	
				Ko, NEHNO, NRHNO are applicable for MODELNO =1, 2, 3, 4, 5, 10, 12	

Card		Input Data and Definitions (Main File)		
Group				
Continuum Element	Material Property Data Skeleton Property for MODELNO = 1 (Flastic Model)			

Card			Input Data and Definitions (Main File)
Continuum Element	Material Property Data	or MODELNO = 2 (Von Mises Model)	Input Data and Definitions (Main File) 5.3.2.4.2 For MODELNO = 2 [Von Mises Model] E, ν σ E Young's modulus ν Poisson's ratio σ Shear strength in triaxial compression
Cor	Mate	Skeleton Property for MODELNO = 2	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Card Group		Input Data and Definitions (Main F	File)
tensile crack ST _s Factor used to divide shear modulus for the cracked zone Note: To ignore stiffness reduction associated with tensile crack, use ST _n =ST _s =1.0	5	$_{\odot}$	For MODELNO = 3 [Mohr-Coulomb Model of the shear strength of the	gth in triaxial agth in triaxial ressure ss normal to modulus for the

Card Group			Input	Data and Definitions (Main File)
	Material Property Data	Skeleton Property for MODELNO = 4 (In Situ Rock Model)	5.3.2.4.4 <u>For MODE</u> E, v	Data and Definitions (Main File) ELNO = 4 [In Situ Rock Model] σ_c , K, T, ST _n , ST _s Young's modulus Poisson's ratio Internal frictional angle (°) Cohesion $C = \frac{(1 - \sin \phi)}{2 \cos \phi} \sigma_c$ The ratio of the shear strength in triaxial extension to the shear strength in triaxial compression at the same pressure Tensile strength Factor used to divide stiffness normal to tensile Factor used to divide shear modulus for the cracked zone Hoek and Brown material parameters See Table 3
		Skeleto	$\sigma_{\!\scriptscriptstyle c}$	Unconfined compressive strength
		Skele	$\sigma_{\rm c}$	Unconfined compressive strength

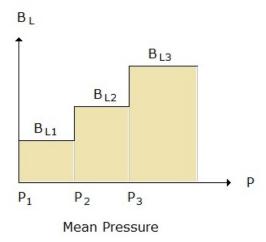
Table 3 Hoek and Brown Material Parameters (m, s)

Rock Type Rock Quality	Dolomite, Limestone & Marble	Mudstone, Siltstone, Shale and Slate (normal to cleavage)	Sandstone and Quartzite	Andesite, Dolerite & Rhyolite	Amphibolite, Gabbro, Gneiss, Norite and Quartz-Diorite
Intact CSIR rating = 100 NGI rating = 150	m = 7	10.0	15.0	17.0	25.0
	s = 1	1.0	1.0	1.0	1.0
Very Good Quality CSIR rating = 85 NGI rating = 100	3.5 0.1	5.0 0.1	7.5 0.1	8.5 0.1	12.5 0.1
Good Quality CSIR rating = 65 NGI rating = 10	0.7	1.0	1.5	1.7	2.5
	0.004	0.004	0.004	0.004	0.004
Fair Quality CSIR rating = 44 NGI rating = 1	0.14	0.20	0.3	0.34	0.5
	0.001	0.0001	0.0001	0.0001	0.0001
Poor Quality CSIR rating = 23 NGI rating = 0.1	0.04	0.05	0.08	0.09	0.13
	0.00001	0.00001	0.00001	0.00001	0.00001
Very Poor Quality CSIR rating = 3 NGI rating = 0.01	0.007	0.01	0.015	0.017	0.025
	0.0	0.0	0.1	0.0	0.0

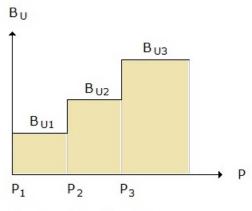
Table 3 Continued

Description of Rock Quality

Intact Rock Samples	Laboratory size specimens free from joints
Very Good Quality Rock Mass	Tightly interlocking undisturbed rock with unweathered joints at 1 to 3m
Good Quality Rock Mass	Fresh to slightly weathered rock, slightly disturbed with joints at 1 to 3m
Fair Quality Rock Mass	Several sets of moderately weathered joints spaced at 0.3 to 1m
Poor Quality Rock Mass	Numerous weathered joints at 30 to 500mm with sane gouge. Clean compacted waste rock
Very Poor Quality Rock Mass	Numerous heavily weathered joints spaced < 50m with gouge. Waste rock with fines


Card Group	Input Data and Definitions (Main File)					
Continuum Element	Material Property	Skeleton Property for MODELNO = 5 (Generalized Hoek and Brown Model)	For MODELNO = 5 [Generalized Hoek & Brown Model] Elastic Parameters E, v E Young's Modulus v Poisson's Ratio Tensile Strength Parameters NTCUT NTCUT = 0 No tension cut-off = 1 Tension cut-off For NTCUT = 1, otherwise go to next Card T, St _n , St _s T Tensile strength ST _n Factor used to divide stiffness normal to tensile crack ST _s Factor used to divide shear modulus for cracked zone Note: To ignore stiffness reduction associated with tensile crack, use ST _n =ST _s =1.0 Strength Parameters A ₁ , A ₂ , A ₃ , A ₄ , A ₅ , A ₆ , A ₇ , A ₈ 1. Von Mises (A ₁ = 0.0) F = q - A ₄ R(θ) A ₂ = A ₃ = 0.0 A ₄ = A ₆ = q _{VM} = σ Refer to Card 5.3.2.4.2			

Card Group			Input Data and Definitions (Main File)
5	5.3		5.3.2.4.5
Continuum Element	Material Property	Skeleton Property for MODELNO = 5 (Generalized Hoek and Brown Model)	2. Hoek and Brown $(A_1 = 0.5)$ $F = q - ((A_2 + A_3 p)^2 + A_4) R(\theta)$ $A_2 = (m^2 / 36 + s) \sigma_c^2$ $A_3 = m \sigma_c$ $A_4 = m \sigma_c / 6$ Refer to Card 5.3.2.4.4 3. Mohr-Coulomb $(A_1 = 1.0)$ $F = q - ((A_2 + A_4) + A_3 p) R(\theta)$ $A_2 + A_4 = 3 \sigma_c (1 - \sin\phi) / (3 - \sin\phi)$ $A_3 = 6 \sin\phi / (3 - \sin\phi)$ Refer to Card 5.3.2.4.3 4. Quadratic $(A_1 = 2.0)$ $F = q - (A_2 + A_3 p + A_4 p^2) R(\theta)$ 5. Elliptic $(A_1 = 3.0)$ $F = q - (A_3 + (A_6 - A_3) (1 - ((p - A_2)/A_4)^2)^{1/2}) R(\theta)$ $A_5 = K$ (See notes in previous page) $A_6 = q_{VM}$ (Von Mises limit stress) The mean pressure (p_o) at which it reaches Von Mises limit stress (q_{VM}) is given by: For $A1 = 0.0$, $p_o = \infty$ For $A1 = 0.5$, $p_o = ((A_6 - A_4)^2 - A_2)/A_3$ For $A1 = 1.0$, $p_o = (A_6 - (A_2 + A_4))/A_3$ For $A1 = 2.0$, $p_o = (A_6 - (A_2 + A_4))/A_3$ For $A1 = 3.0$, $p_o = A_2$


Card Group			Input Data and Definitions (Main File)
5	5.3		5.3.2.4.5
Continuum Element	Material Property	Skeleton Property for MODELNO = 5 (Generalized Hoek and Brown Model)	$\begin{array}{ll} A_{7} = p_{BD} & Brittle-Ductile transition pressure \\ A_{8} = r_{i} & Initial dilatancy parameter \\ \end{array}$ Dilatancy parameter r is calculated as $\begin{array}{ll} For \ p_{BD} > 0.0 \ and \ p < p_{BD} \\ r = r_{i} \ (1 - p \ / p_{BD}) \\ \end{array}$ For $p_{BD} > 0.0 \ and \ p \ge p_{BD} \\ r = 0.0 \\ \end{array}$ For $p_{BD} > 0.0 \ and \ p \ge p_{BD} \\ r = 0.0 \\ \end{array}$ Note: Derivatives of potential function (Q) are related to the yield function (F) as $\frac{\partial \ Q \ / \partial \ p = (\partial \ F \ / \partial \ p) \ r}{\partial \ Q \ / \partial \ q = (\partial \ F \ / \partial \ q)}$ $\frac{\partial \ Q \ / \partial \ q = (\partial \ F \ / \partial \ q)}{\partial \ Q \ / \partial \ \theta = (\partial \ F \ / \partial \ q)}$ For associated flow rule use $A_{7} = 0.0, \ A_{8} = 1.0 \ and set \ ISYMSOL=1 \ in \ Card \ 1.1 \\ $ For no plastic volume change use $A_{7} = 0.0, \ A_{8} = 0.0 \ and \ set \ ISYMSOL=2 \ in \ Card \ 1.1 \\ $ For all non associated cases set \ ISYMSOL=2 \ in \ Card \ 1.1 \\ \end{array}

S 5.3 S.3 Pressure - Dependent Moduli IBULK, ISHEAR IBULK = 0 Constant bulk modulus = 1 Nonlinear bulk modulus ISHEAR = 0 Constant shear modulus = 1 Constant Poisson's ratio Loading Bulk Modulus Definition NLPC NLPC Number of volumetric pressure/modulus pairs describing the virgin loading bulk modulus P ₁ , B _{L1} P ₂ , B _{L2} P _n , B _{Ln} P ₁ , B _{L1} P ₂ , B _{L2} P _n , B _{Ln} NUPC Number of volumetric pressure/modulus pairs Unloading Bulk Modulus Definition NUPC Number of volumetric pressure/modulus pairs describing unloading bulk modulus P ₁ , B _{U1} P ₂ , B _{U2} P _n , B _{U1} P ₂ , B _{U2} P _n , B _{U1} P ₂ , B _{U2} P _n , B _{Un} P ₁ , B _{U1} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₂ , B _{U2} P _n , B _{Un} P ₃ , B _{U2} P _n , B _U P ₃ , B _{U2} P _n , B _{U2} P ₃ , B _{U2} P _n , B _{U2} P ₃ , B _{U2} P _n , B _{U2} P ₃ , B _{U2} P _n , B _{U2} P ₃ , B _{U2} P _n , B _{U2} P ₃ , B _{U2} P _n , B _{U2}
P _i , B _{ui} Pressure and bulk modulus pairs

Loading Bulk Modulus as a Function of Mean Pressure

Unloading Bulk Modulus as a Function of Previous Max Pressure

Previous Max Mean Pressure

Card Group		Input Data and Definitions (Main File)
5 5.	Material Property Skeleton Property for MODELNO = 6 (Advanced Plastic Model)	For MODELNO = 6 [Advanced Elasto-plastic Model] Not Available

Card Group		Input Data and Definitions (Main File)
Continuum Element	Material Prop	For MODELNO = 7 [Single Hardening Elasto-Plastic Model] Not Available Precision Parameters NDVMIN, NDVMAX, DEEMAX, NUNLOAD, NDRIFT NDVMIN Min number of plastic strain sub increment NDVMAX Max number of plastic strain sub increment DEEMAX Max plastic strain sub increment NUNLOAD = 0 Smooth initial unloading = 1 No smooth unloading NDRIFT = 0 Drift correction = 1 No drift correction Tensile Strength APEX, ATMO APEX Tensile strength T ATMO Atmospheric pressure Pa Elastic Constant AKUR, AN, APOI AKUR Elastic Young's modulus constant Kur AN Elastic Young's modulus exponent n APOI Elastic Poisson's ratio v Isotropic Hardening NACRV AACC(I), AAPC(I), ABRK(I) I = 1, NACRV NACRV Number of segments for isotropic hardening function AACC Isotropic hardening constant C

Card Group			Input Data and Definitions (Main File)
5	5.3		5.3.2.4.7
		del)	AAPC Isotropic hardening constant P ABRK Break point in terms of W _p /P
		stic Mo	Failure Constant AK, AMY, AETA1
		7 (Single Hardening Elasto-Plastic Model)	AK The ratio of triaxial extensive to compressive strength at a given pressure AMY Failure exponent m AETA1 Failure constant η_1
Element	erty	Hardenir	Yield Constant AY1, AH, ALPHA
Continuum Element	rial Property	7 (Single	AY1 Yield constant ψ ₁ AH Yield constant h ALPHA Yield constant α
Ö	Material		Potential Constant AY2, AMU
		Skeleton Property for MODELNO =	AY2 Potential constant ψ ₂ AMU Potential constant μ
		perty f	Unload/Reload Constant AHLAM, AHGAM, AHBET, APCO
		ton Pro	AHLAM (λ), AHGAM (γ), AHBET (β) These unload/reload constants are not used
		Skele	APCO Effective mean pressure at which yielding begins

Card Group			Input Data and Definitions (Main File)
Continuum Element	opert	Skeleton Property for MODELNO = 8 (JWL High Explosive Model)	For MODELNO = 8 [JWL High Explosive Model] Elastic Constant E, ν Note: When using JWL model, specify NLNR = 1 and NGEN = 1 in Card 2 JWL Model Parameters A, B, R ₁ , R ₂ , ω, E _ν A JWL material constant (Megabar) B JWL material constant (Dimensionless) R ₂ JWL material constant (Dimensionless) E _ν Chemical energy density of explosive (Megabar cc/cc) Burn Fraction Parameters C _d , B _s , XL C _d Detonation velocity B _s Constant used to spread the detonation front [Usually set B _s = 2.5] XL Characteristic length of element If XL = 0.0, program computes XL Note: If C _d = 0 and B _s = 0, XL represents LHNO (Pressure Load History Number) specified in Cards 9.2.3.1 through 9.2.3.5 and above JWL parameters are ignored

Card Group			Input Data and Definitions (Main File)
Continuum Element	Material Property Data	Skeleton Property for MODELNO = 9 (Modified Cam Clay Model)	For MODELNO = 9 [Modified Cam Clay Model] Cam-Clay Material Parameters P _c , e _o , v, C _c , C _r , M, G _o P _c Preconsolidation pressure e _o Initial void ratio v Poisson's ratio C _c Virgin compression index M Strength parameter G _o Initial elastic shear modulus at P _c When G _o = 0, shear modulus is computed based on v Tensile Strength Parameters NTCUT NTCUT = 0 No tension cut-off = 1 Tension cut-off For NTCUT = 1, otherwise go to next Card T, ST _n , ST _s T Tensile strength ST _n Factor used to divide stiffness normal to tensile crack ST _s Factor used to divide shear modulus for cracked zone Note: To ignore stiffness reduction associated with tensile crack, use ST _n = ST _s = 1.0

Card Group			Input Data and Definitions (Main File)			
5	5.3	5.3	5.3	5.3	5.3	5.3.2.4.9 Creep Option NCREEP
Continuum Element	Material Property Data	Skeleton Property for MODELNO =9 (Modified Cam Clay Model)	NCREEP = 0 No creep = 1 Only volumetric creep = 2 Only deviatoric creep = 3 Both volumetric and deviatoric creep Volumetric Creep Parameters (For NCREEP = 1 or 3) t _{vi} , C _a t _{vi} Initial volumetric age C _a Secondary compression coefficient Deviatoric Creep Parameters (For NCREEP = 2 or 3) t _{di} , A, a, m t _{di} , Initial deviatoric age A Sing-Mitchell creep parameter a Sing-Mitchell creep parameter m Sing-Mitchell creep parameter Note: Deviatoric creep is not available			

Card Group		Input Data and Definitions (Main File)
5 S	Material Property Data Skeleton Property for MODELNO = 10 (Engineering Model)	Input Data and Definitions (Main File) 5.3.2.4.10 For MODELNO = 10 [Engineering Model] Strength Parameters NSTYPE ST1, Y1, S1, VM1 NSTYPE = 1 Single failure surface = 2 Double falling failure Surface Peak Tensile failure limit Y1 Yield stress intercept S1 Slope VM1 Von Mises limit For NSTYPE = 2
Continuum Element	Material Proper Skeleton Property for MODELNO	For NSTYPE = 2 FSRATE ST2, Y2, S2, VM2 FSRATE Rate of deviatoric plastic strain at which failure surface drops to residual level Residual Tensile failure limit Y2 Yield stress intercept S2 Slope VM2 Von Mises limit Loading Modulus NLS EBL(i), BKL(i), POL(i) i = 1, NLS NLS Number of loading slopes EBL(i) Volume strain breakpoint between loading slopes i and i+1 BKL(i) Bulk modulus for loading slope i

Card Group			Input Da	ata and Definitions (Main File)						
5	5.3		5.3.2.4.10							
			Unloading N	<u>Modulus</u>						
		(lapo	NUS PBU(i), BK	U(i), POU(i) i = 1, NUS						
		Jg Mc	NUS	Number of unloading slopes						
		10 (Engineering Model)	PBU(i)	Pressure breakpoint between unloading slopes i and i+1						
ent	Data	10 (En	BKU(i)	Bulk modulus for unloading slope i						
Elem	erty	Ш	POU(i)	Poisson's ratio for unloading slope i						
Шn	Prope	ELN	Note:	Special case for NLS = 1						
Continuum Element	Material Property	Material Propert Skeleton Property for MODELNO	Material F	Material F	Material rty for MOI	Material rty for MO	Material irty for MO	Material irty for MO	1.	Loading and unloading modulus are assumed to be the same Input data for unloading Modulus is not considered
			2.	Tension cutoff is based on individual principal stress. The limit of tensile stress is equal to ST1 / 3						

Card Group		Input Data and Definitions (Main File)
Continuum Element	Material Property Data Skeleton Property for MODELNO = 11 (Joint Model)	For MODELNO = 11 [Joint Model] Elastic Modulus and Thickness NM E, G, t, v NM = 0 Linear elastic joint = 1 Nonlinear joint = 2 Lumped nonlinear joint = 3 Contact nonlinear joint = 4 Thin Layer Element E Elastic Young 's modulus G Elastic shear modulus t Joint thickness v Poisson 's ratio (Used for NM = 4) Strength Parameters (Only for NM > 0) C, φ, r C Cohesion φ Friction angle (') r = -1 Decoupled volume and shear = 0 No plastic volume change (N.A.) = 1 Associated flow rule (N.A.) = -2 Decoupled shear (N.A.)

Card Group			Input Data and Definitions (Main File)
5	5.3		5.3.2.4.11
Continuum Element	Material Property Data	Skeleton Property for MODELNO = 11 (Joint Model)	Normal Stress-Strain Relation (Only for NM = 1,2,3) ε ₁ , σ ₁ ε ₂ , σ ₂ ε ₃ , σ ₃ ε ₄ , σ ₄ ε _i , σ _i Pair of strain and stress to define normal stress-strain relation (Tension is positive) Tensile Strength (Only for NM = 4) TENSTR TENSTR Tensile strength Note: 1. For t > 0.0, coordinateso of joint element is adjusted based on t 2. For t < 0.0, no adjustment of coordinates. Users input mesh should represent joint thickness t 3. For t = 0.0 and NM = 4, joint thickness by user's input coordinate 4. Lumped nonlinear joint (NM=2) has better performance than nonlinear joint (NM=1). Contact nonlinear joint (NM=3) has no resistance in shear.

Card Group	Input Data and Definitions (Main File)
Continuum Element	For MODELNO = 12 [Duncan and Chang Hyperbolic Model] A ₁ , A ₂ , A ₃ , A ₄ , A ₅ , R _f A ₁ = 1.0 A ₂ = 1000. A ₃ = 6 sinφ / (3 - sinφ) A ₄ = 6 cosφ C / (3 - sinφ) - 1000 A ₅ = 1.0 R _f = 0.7 ~ 0.9 Loading Bulk Modulus Definition NLPC NLPC Number of volumetric strain/modulus/ Poisson's ratio pairs describing the virgin loading NLPC Cards [EBL ₁ , BKL ₁ , POL ₁ EBL ₂ , BKL ₂ , POL ₂ EBL _n , BKL _n , POL _n EBL, BKL, POL Refer to Card 5.3.2.4.10 Unloading Bulk Modulus Definition NUPC NUPC Number of volumetric pressure/modulus /Poisson's ratio pairs describing the unloading NUPC Cards [PBU ₁ , BKU ₁ , POU ₁ PBU ₂ , BKU ₂ , POU ₂ PBU _n , BKU _n , POU _n PBU, BKU, POU Refer to Card 5.3.2.4.10

Card Group		Input Dat	a and Definitions (Main File)
Continuum Element Material Property Data	MODELNO = 13 (Elastic Model for SHELL Element)	E, v, t, FAC For IRB = 1 E _s , NRBX, E, v YC t Si FACIN M FACBD M E _n FC MR _{ij} M M IRB In E _s YC NRBX NI NRBY NI d _i , As _i CC	CIN, FACBD, MR ₁₂ , MR ₂₃ , MR ₃₄ , MR ₄₁ , IRB CInclude Reinforcing Bars] NRBY, d ₁ , As ₁ , d ₂ , As ₂ , d ₃ , As ₃ , d ₄ , As ₄ roung's modulus, Poisson's ratio rell thickness cultiplication factor for in-plane stiffness. cultiplication factor for bending stiffness. cultiplication factor for in-plane stiffness. cultiplication factor for bending stiffness. cultiplication factor for in-plane stiffness. cultiplication factor for in-plane stiffness. cultiplication factor for bending stiffness. cultiplication factor for in-plane stiffness. cultiplication factor for in-plan

Card			Input Data and Definitions (Main File)		
Group					
5	5.3		5.3.2.4.14		
			For MODELNO = 14 [User Defined Model]		
Continuum Element	Material Property Data	MODELNO = 14 (User Defined Model)	PROP (41) 60 Cards PROP (42) -		

Card Group		Input Data and Definitions (Main File)			
5	5.3		5.3.2.4.15		
			For MODELNO = 15 [User Defined Model]		
			FROP (41) 60 Cards PROP (42) - - PROP (100)		
		Model)	PROP (41) - PROP (100): Material constants related to the User's Model.		
Continuum Element	Continuum Element Material Property Data	aterial Property Data NO = 15 (User Defined Model)	Note: 1. Users can use their own material model by modifying file MODEL15.FOR in the directory C:\SMAP\SMAP3D\PROGRAM\USER\MODEL-15. Input material constants and state variables to the User's Material Model are described in detail in source file MODEL15.FOR.		
		MODELNO	MODEL15.FOR can be compiled by Microsoft Fortran PowerStation 4.0 using the batch file MAKE15.BAT.		
			3. Text file LABEL15.DAT can be modified appropriately.		
			4. Dynamic Link Library file MODEL15.DLL can be obtained once compiled. MODEL15.DLL should be saved in the directory C:\SMAP\SMAP3D\PROGRAM.		

Card		Input Data and Definitions (Main File)				
Continuum Element	Material Property Data MODELNO = 16 (User Defined Model)	Input Data and Definitions (Main File) 5.3.2.4.16 For MODELNO = 16 [User Defined Model] PROP (41) 60 Cards PROP (42) - PROP (100) PROP (41) - PROP (100): Material constants related to the User's Model. Note: 1. Users can use their own material model by modifying file MODEL16.FOR in the directory C:\SMAP\SMAP3D\PROGRAM\USER\MODEL-16. Input material constants and state variables to the User's Material Model are described in detail in source file MODEL16.FOR. 2. MODEL16.FOR can be compiled by Microsoft Fortran PowerStation 4.0 using the batch file MAKE16.BAT. 3. Text file LABEL16.DAT can be modified appropriately. 4. Dynamic Link Library file MODEL16.DLL can be obtained once compiled. MODEL16.DLL should be saved in the directory C:\SMAP\SMAP3D\PROGRAM.				

Card Group	Input Data and Definitions (Main File)						
5	5.3		5.3.2.4.17				
			For MODELNO = 17 [User Defined Model]				
Continuum Element	Material Property Data	MODELNO = 17 (User Defined Model)	PROP (41) 60 Cards PROP (42) - - - - - - - - - - - - -				

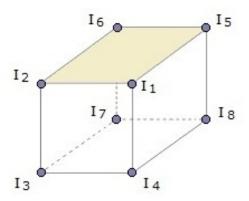
6			Input Data and Definitions (Main File)				
Card Group	Input Data and Definitions (Main File)						
5	5.3		5.3.2.4.18				
			For MODELNO = 18 [User Defined Model]				
Continuum Element	Material Property Data	MODELNO = 18 (User Defined Model)	For MODELNO = 18 [User Defined Model] PROP (41) PROP (42) PROP (100) PROP (41) - PROP (100): Material constants related to the User's Model. Note: Users can use their own material model by modifying file MODEL18.FOR in the directory C:\SMAP\SMAP3D\PROGRAM\USER\MODEL-18. Input material constants and state variables to the User's Material Model are described in detail in source file MODEL18.FOR. MODEL18.FOR can be compiled by Microsoft Fortran PowerStation 4.0 using the batch file MAKE18.BAT. Text file LABEL18.DAT can be modified appropriately. Dynamic Link Library file MODEL18.DLL can be obtained once compiled. MODEL18.DLL should be saved in the directory C:\SMAP\SMAP3D\PROGRAM.				

Solution Solution	c modulus n angle o dilation portant ulation rate 33°) t 2.0) ce ear stress e line lt 0.01) eduction olidation eters. oulou, k. Earthquake 1,

Card Group		Input Data and Definitions (Main File)
Continuum Element	Skew Boundary	NSKEW NSKEW Number of element sides on a skew boundary. Not available (Use NSKEW = 0)

Card Group		Input Data and Definitions (Main File)							
Continuum Element	Initial Stress	IEFST IEFST = 0 Zero initial effective stress = 1 Specified initial effective stress 5.6.2 If IEFST = 1, list initial effective stresses for each element SXX, SYY, SZZ (NCONT Cards) SXX σ _x ' (Normal stress in x direction) SYY σ _y ' (Normal stress in y direction) SZZ σ _z ' (Normal stress in z direction) Note: For joint element (KS > 0), SZZ represents joint nomal stress and SXX = SYY = 0.0. 5.6.3 IPOFP IPOFP = 0 Zero initial pore fluid pressure = 1 Specified initial pore fluid pressure Fig. 4. If IPOFP = 1, list initial pore fluid pressure for each element PRF (NCONT Cards) PRF List initial pore fluid pressures for each element, specified sequentially from 1 to NCONT							

Card Group		Input Data and Definitions (Main File)						
	Element Surface	NUI MA ⁻ If N	Input Data and Definitions (Main File) MEST, MATEST MEST Number of material & element surface traction TEST Number of material surface traction IUMEST = 0, go to Card Group 6 5.7.2.1 (MATEST) Cards MAT, KP, KH, KD, a ₀ , a ₁ , a ₂ , a ₃ (NUMEST - MATEST) Cards NEL, KP, KH, KD, a ₀ , a ₁ , a ₂ , a ₃ MAT Material number NEL Element number KP Element surface designation number					
		For Each Material / Element Surface	KH Load history number specified in Cards 9.2.3.1 through 9.2.3.5. If KH=0, constant static pressure/traction vector is acting all the time. KD = 0 Uniformly distributed traction vector defined in local coordinate system $P'_{n} = a_{0} P_{x} = a_{1} P_{y} = a_{2} P_{z} = a_{3}$ = 1 Uniformly distributed traction vector defined in global coordinate system $P'_{n} = a_{0} P_{x} = a_{1} P_{y} = a_{2} P_{z} = a_{3}$ $P'_{n} \text{ is static normal pressure.}$ (Compression is positive) = 2 Linearly distributed static normal pressure $P_{n4} = a_{0} \text{ at } I_{4}' P_{n1} = a_{1} \text{ at } I_{1}'$ $P_{n2} = a_{2} \text{ at } I_{2}' P_{n3} = a_{3} \text{ at } I_{3}'$					


Card Group		Input Data and Definitions (Main File)							
Continuum Element	Element Surface	For Each Material / Element Surface	Linearly distributed surface tractions defined in global coordinate system $ = 3 q_X \\ q_{x4} = a_0 \text{at } I_4' q_{x1} = a_1 \text{at } I_1' \\ q_{x2} = a_2 \text{at } I_2' q_{x3} = a_3 \text{at } I_3' \\ = 4 q_Y \\ q_{Y4} = a_0 \text{at } I_4' q_{Y1} = a_1 \text{at } I_1' \\ q_{Y2} = a_2 \text{at } I_2' q_{Y3} = a_3 \text{at } I_3' \\ = 5 q_Z \\ q_{Z4} = a_0 \text{at } I_4' q_{Z1} = a_1 \text{at } I_1' \\ q_{Z2} = a_2 \text{at } I_2' q_{Z3} = a_3 \text{at } I_3' \\ = 6 \text{Static normal pressure given as functions of global X, Y and Z coordinates } \\ P'_n = a_0 + a_1 X + a_2 Y + a_3 Z \\ \text{Global surface traction given as functions of global X, Y and Z coordinates} \\ = 7 q_X \\ q_X = a_0 + a_1 X + a_2 Y + a_3 Z \\ = 8 q_Y \\ q_Y = a_0 + a_1 X + a_2 Y + a_3 Z \\ = 9 q_Z \\ q_Z = a_0 + a_1 X + a_2 Y + a_3 Z \\ \text{Note1: Element traction is not available for } \\ \text{KS} = -1 \text{ (High Explosive Solid Element)} \\ \text{Note2: (NEL1, -NEL2) generates the same } \\ \text{surface traction from NEL1+1 to NEL2.} \\ \text{This also applies to material based traction.} \\ \text{Refer to description in next page} \\$						

Element Surface Designation and Local Axes

KP	8-No	ode Bricl	k		6-Node Wedge			
	I ₁ '	I ₂ '	I ₃ '	I ₄ '	I ₁ '	I ₂ '	I ₃ '	I ₄ '
1	5	6	2	1	5	6	2	1
2	6	7	3	2	6	7	3	2
3	7	8	4	3	7	5	1	3
4	8	5	1	4	0	0	0	0
5	1	2	3	4	1	2	3	0
6	6	5	8	7	6	5	7	0

For Shell element, use KP = 1.

For KP = 1

Card Group		Inp	ut Data and Definitions (Main File)					
6	6.1 NBI		number of beam elements BEAM = 0, go to Card Group 7					
	6.2 NBI	NBMST Use NBMST = 1						
	6.3 NTI		ber of material property set for beam element					
Beam Element	For Each Msterial	6.4.1 MATNO, MR MATNO Mat MR = 0 = 1 = -1 = 2 = 3 = 11 = 12 = 13 = 14 = 15 = 16 NEHNO	erial number Moment Release No hinge Hinge at node I Hinge at node I and J Joint spring element Spring Element at Node I Axial spring (Kx = E A / L) Shear(y) spring (Ky = 12 E Iz / L³) Shear(z) spring (Kz = E Iz / L³) Torsional spring (Kt = G J / L) Rotational(y) spring (Kry = 4 E Iy / L) Rotational(z) spring Element at Node J Young's modulus multiplication factor history number in Card Group 9.2.3					
		NFSHR = 0 = 1	Neglect shear deformation Include shear deformation					
		CTSy, CTSz DAMP	Shear coefficient for Iy, Iz Critical damping ratio					

Card Group	Input Data and Definitions (Main File)
Group 6 6.	Input Data and Definitions (Main File) 6.4 6.4.2 For MR ≠ 3 A, WL, RHO, E, G, J, I, I₂ A Cross section area WL Weight per unit length of beam RHO Mass density E Young's modulus G Shear modulus J Torsional moment of inertia I₁ Moment of inertia about member y axis I₂ Moment of inertia about member z axis For MR = 3 K₂, K₂, K₂, K₃, K₃, K₃, Shear(y) spring stiffness K₂ Shear(z) spring stiffness K₃ Rotational(y) spring stiffness K₃ Rotational(z) spring stiffness K₃ Rotational(z) spring stiffness

Card Group	Input Data and Definitions (Main File)					
7	NTRUSS					
	NTRUSS	Total number of truss elements				
		If NTRUSS = 0, go to Card Group 8				
	NTRST					
ent	NTRST	Use NTRST = 1				
Truss Element	NTNT, MATP ₁ , MATP ₂ , MATP ₃					
 - -	NTNT	Number of material property set for truss element				
	MATP	Material number of parent continuum element which is not allowed to embed truss element				

		Touch Date and Definitions (Main File)					
Card Group		Input Data and Definitions (Main File)					
7	7.4	MATNO, ME, MS MATNO Material number ME = 0 No embedment = 1 Embedded with auto subdivision = 2 Embedded with no subdivision = 3 Embedded using input NELPI and NELPJ See Card 5.2 in mesh file description =-N Embedded with N equal subdivision					
Truss Element	For Each Material	MS = 0 No slip = 1 Monotonic loading path = 2 Arbitrary loading path = n (n > 2) Plastic stiffness = Kslip x 10 ⁻ⁿ Note: For ME = 1, 2, and -N, input files of mesh and main are automatically updated					
		A, WL, RHO, E, STRSI, DAMP A Cross section area WL Weight per unit length of truss RHO Mass density (Used for dynamic analysis) To lump all mass at node J, use -RHO E Young's modulus STRSI Initial stress. Tension is positive For constant initial stress, use E = 0 DAMP Critical damping ratio Negative for viscous damping constant					

		Transfer and Deficitions (Main File)				
Card Group		Input Data and Definitions (Main File)				
7	Material Arterial	Input Data and Definitions (Main File) 7.4.3 If NLNR = 0 and NGEN = 0, skip this Card σ_{yc} , σ_{yt} , ϵ_f , I, y_{max} σ_{yc} Yield stress in compression Yield stress in tension ϵ_f Strain at rupture For $\epsilon_f \le \sigma_y/E$, ϵ_f represents Yield strain at tension I Moment of inertia (Minimum) y_{max} Distance from neutral axis to extreme fiber (Maximum) $\sigma_{yc} = \sigma_{yt} = 0$: Linear elastic material $\sigma_{vc} = 0$: No compression (Cable)				
Truss Element	For Each Material	$\sigma_{yc} = \sigma_{yt} = 0 : \text{Linear elastic material} \\ \sigma_{yc} = 0 : \text{No compression (Cable)} \\ \sigma_{yt} = 0 : \text{No tension (Strut)} \\ I = 0 : \text{No buckling} \\ y_{max} = 0 : \text{No yield on buckling} \\ \end{cases}$ $7.4.4$ If MS = 0, skip this Card Kslip, Cmax, Cres, Umax, Ures, Dslip Kslip Stiffness for shear stress - slip displacement Cmax Maximum cohesion Cres Residual cohesion (N.A.) Umax Slip at the end of Cmax (N.A.) Ures Slip at the beginning of Cres (N.A.)				
		Dslip Diameter of slip surface				

Card Group	Input Data and Definitions (Main File)
8	NFAD, MCFAD, MBFAD, MTFAD
	NFAD Number of materials / elements with activity MCFAD Number of continuum materials with activity MBFAD Number of beam materials with activity MTFAD Number of truss materials with activity
	If NFAD = 0, go to Card Group 9
	(MCFAD) Cards MATC, NAC, NDAC
Element Activity	(MBFAD) Cards MATB, NAC, NDAC-
Elemer	(MTFAD) Cards MATT, NAC, NDAC
	(NFAD - MCFAD - MBFAD - MTFAD) Cards NEL, NAC, NDAC
	MATC Continuum material number MATB Beam material number MATT Truss material number NEL Element number
	NAC Load step at which an element is activated NDAC Load step at which an element is deactivated
	Note: If initially active and deactivated at step 5: NAC = 0, NDAC = 5 If active permanently from step 20: NAC = 20, NDAC > NCYCL (NEL1, -NEL2) generates the same activity from NEL1+1 to NEL2. This also applies to material based activity.

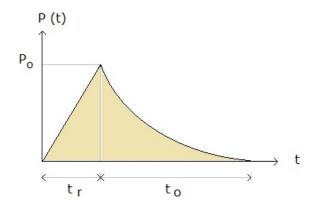
Card	Input Data and Definitions (Main File)				
Group					
9	9.1	9.1.1 NGSTEP			
			load steps (Cycles) lich the gravity load is applied		
		Note: During gravity load step, i	inertia forces are not active		
	oad	To print time history output use negative value of NG Output times would be rel	·		
Loads	Gravity Load	9.1.2 If NGSTEP = 0, go to Card Gr IRELD, FRX, FRY, FRZ, NH	·		
		1	ts/strains include gravity load ts/strains after NGSTEP are avity load		
		FRY Y component	of unit gravity load of unit gravity load of unit gravity load		
		NHFRY Intensity hist	cory number in X direction cory number in Y direction cory number in Z direction		
		Intensity Tim	pecified through Card 9.2.3. les Distribution Factor will be RX, FRY, or FRZ		

Card Group	Input Data and Definitions (Main File)			
9	9.1	$\begin{array}{l} \text{9.1.2.1} \\ \text{If NHFRX} = 0, \text{ skip this card} \\ A_0, A_1, A_2, A_3, Y_1, Y_2 \\ \\ A_i \text{Distribution factor} \\ Y_i \text{Global Y coordinate} \\ \\ \text{For Y} < Y_1 A_i = A_0 \\ \text{For Y} > Y_2 A_i = A_3 \\ \text{For others} A_i = A_1 + (Y - Y_1) * (A_2 - A_1) / (Y_2 - Y_1) \end{array}$		
Loads	Gravity Load	If NHFRY = 0, skip this card A_0 , A_1 , A_2 , A_3 , Y_1 , Y_2 $A_i \text{Distribution factor} Y_i \text{Global Y coordinate}$		
		If NHFRZ = 0, skip this card A ₀ , A ₁ , A ₂ , A ₃ , Y ₁ , Y ₂ A _i Distribution factor Y _i Global Y coordinate		

Count		Input	- Data and Definitions (Main File)						
Card Group		Input	Data and Definitions (Main File)						
9	9.1	9.1.3							
		NUMDIS							
		NUMDIS	Total number of degrees of freedom at which input displacement time histories are specified						
		If NUMDIS	= 0, go to Card Group 9.2.1						
		9.1.4							
	nt	For each of N	UMDIS where displacement is specified						
	ceme	NODE, IDOF,	, LHNO, DINT						
Loads	Specified Displacement	NODE	Node number						
Lo		Specified D	Specified [Specified D	Specified D	Specified [Specified [= 2	Skeleton displacement x-direction y-direction z-direction
		LHNO	Displacement history number corresponding to sequence of displacement specifications given in Card Group 9.1.5.3						
		DINT	Displacement intensity factor						

Card Group		Input Data and Definitions (Main File)					
9	9.1	9.1.5.1 NUM	1DH, NUMDTP, TDSTART, TDFAC				
		NU	JMDH Number of different input displacement time histories				
		NU	JMDTP Number of displacement-time pairs				
		TD	OSTART Starting time				
	ent	TD	PFAC Time scale factor for TD				
'0	laceme						
Loads	Specified Displacement		9.1.5.2 TD ₁ , TD ₂ ,, TD _{NUMDTP}				
		Specifi	Specifi		TD _i Specified times		
		>					
		For Each Load History					
		ad H	SDIS ₁ , SDIS ₂ ,, SDIS _{NUMDTP}				
		h Lo	SDIG ₁ , SDIG ₂ ,, SDIG _{NUMDTP}				
		. Eac	SDIS _i Displacement magnitude at corresponding time TD _i				
		For	at corresponding time 1D;				

Card Group	Input Data and Definitions (Main File)						
	Concentrated Nodal Force	Input Data and Definitions (Main File) 9.2.1 NUMCON NUMCON Total number of degrees of freedom at which input concentrated force time histories are specified If NUMCON = 0, skip the rest of this Card Group 9.2.2 For each of the NUMCON where load is applied NODE, IDOF, LHNO, CINT NODE Node number Total force acting on a given node IDOF = 1 x-direction = 2 y-direction = 3 z-direction					
		Fluid force acting on a given node = 4 x-direction = 5 y-direction = 6 z-direction LHNO Load history number corresponding to sequence of load specifications given in Card Group 9.2.3.4 or 9.2.3.5 CINT Load intensity factor					


Card Group		Input Data and Definitions (Main File)				
	Concentrated Nodal Force	N	ITFNC IUMCH 9.2.3.2 NUM NUM NCT	IUMCH = 0 User-specified arbitrary force = 1 Force is specified by math functions Number of different force time histories ICTP, NCTYPE, DTXC, TCSTART, TCFAC ICTP Number of force-time pairs YPE = 0 Constant time increment = 1 Specified times for all time histories = 2 Specified times for each time history C Constant time interval for NCTYPE = 0 TART Starting time		
			For E	SCON ₁ , SCON ₂ ,, SCON _{NUMCTP} SCON _i Force magnitude at time TC _i		

Card			Input Data and Definitions (Main File)
Group			
Poads	Concentrated Nodal Force	NTFNC = 1 (Math Function)	For each of NUMCH loading time histories NFNC, a ₁ , a ₂ , a ₃ , a ₄ , a ₅ NFNC = 1 Polynomial decaying load = 2 Exponential decaying load = 3 Trigonometric load a ₁ ,a ₂ ,a ₃ ,a ₄ Force function coefficients defined in the next page a ₅ Starting time

Polynomial Decaying (NFNC = 1)

$$a_1 = P_o \quad a_2 = t_r \quad a_3 = t_o \quad a_4 = n$$

For
$$t_r \le t \le (t_r + t_o)$$

$$P(t) = P_o \left[1 - \frac{(t - t_r)}{t_o}\right]^n$$

Exponential Decaying (NFNC = 2)

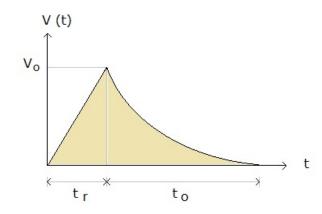
$$P(t) = a_1 + a_2 e^{a_3 t}$$

Trigonometric (NFNC = 3)

$$t \le a_4 P(t) = a_1 \sin(a_2 t) + a_3 \cos(a_2 t)$$

 $t > a_4 P(t) = 0$

9 9.3 9.3.1 NUMVEL	roup	Card Group	Input Data and Definitions (Main File)				
NUMVEL Total number of degrees of freedom at which velocity histories are specified If NUMVEL= 0, skip the rest of this Card Group 9.3.2 For each of the NUMVEL where velocity is specified NODE, IDOF, LHNO, VINT NODE Node number Skeleton velocity IDOF = 1	9.3		NUMVEL NUMVEL If NUMVEL 9.3.2 For each of th NODE, IDOF, NODE IDOF = 1 = 2 = 3 = 4 = 5 = 6 LHNO VINT 9.3.3.1 NTFNV, NUM NTFNV = 6 = 6	at which velocity histories are specified = 0, skip the rest of this Card Group e NUMVEL where velocity is specified LHNO, VINT Node number Skeleton velocity x - direction y - direction z - direction Apparent relative fluid velocity x-direction y-direction z-direction Velocity history number corresponding to sequence of velocity specifications given in Card Group 9.3.3.4 or 9.3.3.5 Velocity intensity factor VH User-specified arbitrary velocity Velocity specified by math function			


Card Group				Input Data a	nd Definitions (Main File)		
9	Loads Specified Velocity	fied Arbitrary Velocity)	NI NI DI TI	NUMVTP, NVTYPE, DTXV, TVSTART, TVFAC NUMVTP Number of velocity-time pairs NVTYPE = 0 Constant time increment = 1 Specified times for all time histories = 2 Specified times for each time history DTXV Constant interval for NVTYPE = 0 TVSTART Starting time TVFAC Time scale factor for TV			
Loads	Specified Ve	NTFNV = 0 (User-Specified Arbitrary Velocity)	For Each Load History	If NVTYPE TV ₁ , TV ₂ , TV _i For NVT for the f			

Card			Input Data and Definitions (Main File)
Group 9	9.3		9.3.3.5
9	9.3		For each of NUMVH velocity time histories NFNV, a_1 , a_2 , a_3 , a_4 , a_5
			NFNV = 1 Polynomial decaying velocity = 2 Exponential decaying velocity = 3 Trigonometric velocity
			a ₁ ,a ₂ ,a ₃ ,a ₄ Velocity function coefficients defined in the next page
Loads	Specified Velocity	NTFNV = 1 (Math Function)	a ₅ Starting time

Polynomial Decaying (NFNV = 1)

$$\begin{aligned} a_1 &= V_o & a_2 &= t_r & a_3 &= t_o & a_4 &= n \\ & & V(t) &= V_o \left[1 \, - \, \frac{\left(\ t \, - \, t_r \ \right)}{t_o} \right]^n \end{aligned}$$

For $t_r \le t \le (t_r + t_o)$

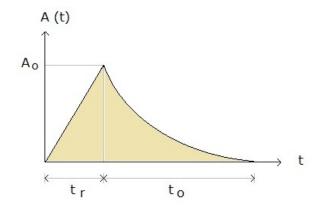
Exponential Decaying (NFNV = 2)

$$V(t) = a_1 + a_2 e^{a_3 t}$$

Trigonometric (NFNV = 3)

Card Group		Input Data and Definitions (Main File)				
9	9.4	9.4.1				
		NINVEL NINVEL Number of degrees of freedom where initial velocity is applied.				
		If NINVEL= 0, skip the rest of this Card Group				
Loads		9.4.2 For each of the NINVEL where velocity is applied				
	ocity	NODE, IDOF, VEL				
	Initial Velocity	NODE Node number				
		Skeleton velocity IDOF = 1 x-direction = 2 y-direction = 3 z-direction				
				Apparent relative fluid velocity = 4 x-direction = 5 y-direction = 6 z-direction		
		VEL Initial velocity				

9 9.5 9.5.1 NUMACC, MOTION, EYB, EDEN, ECP, ECS NUMACC Total number of directions at which input acceleration time histories are specified MOTION = 0 No EHS (Elastic Half Space) = 1 EHS with base acceleration applied = 2 EHS with base shear force applied = 3 EHS with conventional base accel. applied EYB, EDEN, ECP, ECS: Half space top y coordinate, Unit weight, Compression and Shear wave speeds used for elastic half space if MOTION is not zero If NUMACC = 0, Skip the rest of this Card Group 9.5.2 For each of NUMACC where acceleration is specified NODE, IDOF, LHNO, AINT NODE Node number IDOF = 1 x-direction skeleton acceleration = 2 y-direction skeleton acceleration = 3 z-direction skeleton acceleration LHNO Acceleration history number corresponding to sequence of acceleration specifications given in Card Group 9.5.3.4 or 9.5.3.5 AINT Acceleration intensity factor Note: For uniformly distributed acceleration, set all part of the	Card Group	Input Data and Definitions (Main File)
9.5.3.1 NTFNA, NUMAH NTFNA = 0 User-specified arbitrary acceleration = 1 Acceleration specified by math function	9	9.5.1 NUMACC, MOTION, EYB, EDEN, ECP, ECS NUMACC Total number of directions at which input acceleration time histories are specified MOTION = 0 No EHS (Elastic Half Space) = 1 EHS with base acceleration applied = 2 EHS with base shear force applied = 3 EHS with conventional base accel. applied EYB, EDEN, ECP, ECS: Half space top y coordinate, Unit weight, Compression and Shear wave speeds used for elastic half space if MOTION is not zero If NUMACC = 0, Skip the rest of this Card Group 9.5.2 For each of NUMACC where acceleration is specified NODE, IDOF, LHNO, AINT NODE Node number IDOF = 1 x-direction skeleton acceleration = 2 y-direction skeleton acceleration = 3 z-direction skeleton acceleration LHNO Acceleration history number corresponding to sequence of acceleration specifications given in Card Group 9.5.3.4 or 9.5.3.5 AINT Acceleration intensity factor Note: For uniformly distributed acceleration, set all node numbers to zero. Output motions are relative to base motion for MOTION = 0 or 1


Card Group		I	nput D	ata	and Definitions (Main File)
Poads	NIFNA = U (User-Specified Arbitrary Acceleration)	NUI NAT DT) TAS	YATP TYPE = (A START FAC CCM = 9.5.3.3 If NA TA ₁ , TA ₁ For I for t SACC SACC SACC	= 0 = 1 = 2 = 0 = 1	E, DTXA, TASTART, TAFAC, IACCM Number of acceleration-time pairs Constant time increment Specified times for all time histories Specified times for each time history Constant time interval for NATYPE = 0 Starting time Time scale factor for TA Input histories from Main File Input histories from External Files First 3 lines represent headers E = 0, go to next Card , TA _{NUMATP} Specified times YPE =1, specify only once irst load history CM = 1, specified times read from ne_1.dat, Acc_Time_2.dat ACC ₂ ,, SACC _{NUMATP} Acceleration magnitude at time TA _i CM = 1, specified histories read from tory_1.dat, Acc_History_2.dat

Card Group			Input Dat	a and Definitions (Main File)
Group 9 Poads	Specified Acceleration	NTFNA = 1 (Math Function)	NFNA, a_1 , a_2 , NFNA = 1 = 2	MAH acceleration time histories a ₃ , a ₄ , a ₅ Polynomial decaying acceleration Exponential decaying acceleration Trigonometric acceleration Acceleration function coefficients defined in the next page Starting time

Polynomial Decaying (NFNA = 1)

$$a_{\scriptscriptstyle 1} = A_{\scriptscriptstyle 0} \quad a_{\scriptscriptstyle 2} = t_{\scriptscriptstyle r} \quad a_{\scriptscriptstyle 3} = t_{\scriptscriptstyle 0} \quad a_{\scriptscriptstyle 4} = n$$

For
$$t_r \le t \le (t_r + t_o)$$
 $A(t) = A_o \left[1 - \frac{(t - t_r)}{t_o}\right]^n$

Exponential Decaying (NFNA = 2)

$$A(t) = a_1 + a_2 e^{a_3 t}$$

Trigonometric (NFNA = 3)

$$t \le a_4$$
 A (t) = $a_1 \sin (a_2 t) + a_3 \cos (a_2 t)$

Card Group		Input Data and Definitions (Main File)				
Loads	Transmitting Boundary Transmitting Boundary	NODVIS, NELVIS, NOSVIS NODVIS Number of transmitting degrees of freedom NELVIS Number of continuum element surfaces NOSVIS Number of outer boundary surfaces (Max = 6) 9.6.2 If NODVIS = 0, go to Card Group 9.6.3 NODE, IDOF, VISC For each of NODVIS NODE Node number IDOF = 1 Damping in x-direction = 2 Damping in y-direction = 3 Damping in z-direction VISC Constant which is proportional to the force on a given node (pCA _c), equal to impedence times contributing area on the node C = C _p for IDOF normal to the boundary C = C _s for IDOF parallel to the boundary C = C _s for IDOF parallel to the boundary C = C, C _s : Compression & shear wave speed				
		Same as KP in Card Group 5.7.2.1 9.6.4 If NOSVIS = 0, go to next Card Group NOS, VC For each of the NOSVIS NOS Outer surface number VC NOS = 1: VC = Y_{TOP} NOS = 2: VC = X_{LEFT} NOS = 3: VC = Y_{BOTOM} NOS = 4: VC = X_{RIGHT} NOS = 5: VC = Z_{FRONT} NOS = 6: VC = Z_{BACK}				

Card Group	Ir	nput Data and Definitions (Main File)			
10	NTPRNT NTPRNT	Number of cycles between output data print			
	NHPEL NHPEL	Number of elements at which stress/strain time histories are requested			
utput	If NHPEL = 0, s NEL ₁ , NEL ₂ ,, NEL	skip the following Card Element number to be printed			
Requested Output	^{10.3.1} NHPMT NHPMT	Number of nodes at which motion time histories are requested			
	If NHPMT = 0, skip the following Card NODE ₁ , NODE ₂ ,, NODE _{NHPMT}				
	NODE	Node numbers to be printed			
	NTIME NTIME NTIME NTIME Normalian Number of times at which stress/strain/motion profiles are requested				
	If NTIME = 0, skip the following Card TIME ₁ , TIME ₂ ,, TIME _{NTIME}				
	TIME	Time to be printed			

4.5 Post File

Post File contains information which are used to show graphically the results from the main-processing program.

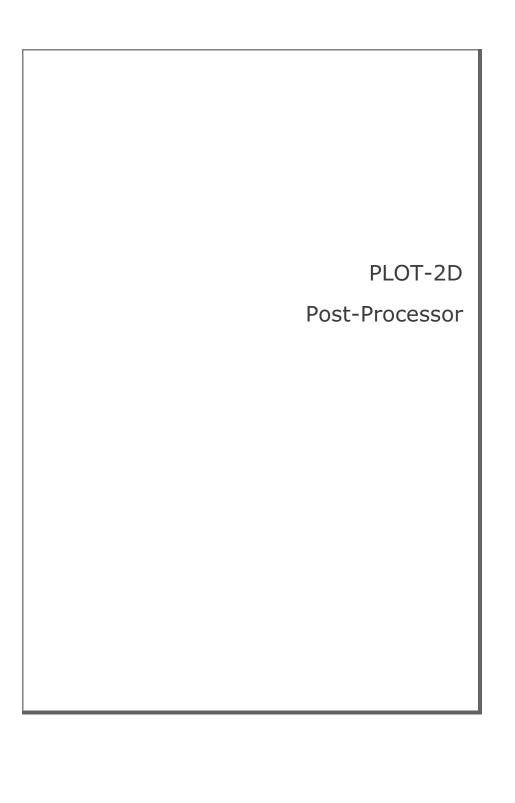
Post File consists of three different card groups:

- Card Group 11 (PLOT-2D)
- Card Group 12 (PLOT-XY)
- Card Group 13 (FEMAP)

Card Group 11 contains the input data which are used to plot the following snapshots in two dimension:

- Finite element mesh/element/node number
- Principal stress distribution
- Deformed shape
- Beam section force/extreme fiber stress/strain
- Truss axial force/stress/strain
- · Contours of continuum element data

Card Group 12 contains the input data for the following plots: Time history


- Stress/strain/time
- Displacement/velocity/acceleration/time

Snapshot

- Stress/strain vs. distance
- Displacement/velocity/acceleration vs. distance

Card Groups 13 is no longer supported.

These plots can be performed automatically by using PLOT-3D.

Card Group	Input Data and Definitions (Post File)
11	11.1
	NPTYPE, IHOR, IVER
PLOT-2D Plot Information	NPTYPE = 0 End of plotting output = 1 Finite element mesh / element number = 2 Principal stress distribution = 3 Deformed shape = 4 Beam section force / fiber stress / strain = 5 Truss axial force / stress / strain = 6 Contours of continuum element data = 7 Stress state in p-q space and octahedral plane. When NPTYPE = 7 is specified, all other cases of NPTYPE are not considered. IHOR, IVER Horizontal and Vertical coordinate flags (x=1, y=2, z=3, -x=-1, -y=-2, -z=-3) If NPTYPE = 0, Skip rest of Card Group 11

TITLE Any title (Max = 70 characters) TITLE Any title (Max = 70 characters) TITLE Any title (Max = 70 characters) TITLE TITLE TITLE Any title (Max = 70 characters) TIUNIT IUNIT = 1 Inch = 2 Cm = 3 User-specified unit TITLE TITLE Any title (Max = 70 characters)
NCHR Number of characters for mesh unit LABEL Name of mesh unit LABEL Name of mesh unit

Card Group		Input Data and Definitions (Post File)
	For NPTYPE = 1 (Finite Element Mesh / Element Number)	IMODE IMODE = 1 Plot finite element mesh = -1 Plot element and node numbers = 2 Plot element numbers = -2 Plot node numbers = 3 Plot skeleton boundary codes = -3 Plot fluid boundary codes = 4 Plot rotational boundary codes = 4 Plot rotational boundary codes 11.2.5 NGROUP NGROUP = 0 Plot all elements > 0 Plot specified groups (Max=1000) 11.2.6 If NGROUP = 0, Skip this Card NGROUP NSS, NEE, NIC, NNN Cards NSS Starting element number in a row NEE Number of elements in a row NIC Element number increment for next row NNN Total number of rows
		20 21 22 23 NEE = 4 NIC = 10 NNN = 3

Card Group		Input Data and Definitions (Post File)
ation	For NPTYPE = 2 (Principal Stress Distribution)	TITLE TITLE Any title (Max = 70 characters) 11.3.2 IUNIT IUNIT = 1 In, Psi = 2 Cm, Kg/cm² = 3 User-specified unit
PLOT-2D Plot Information		For IUNIT = 3 NCHR LABEL NCHRC LABELC NCHR Number of characters for mesh unit LABEL Name of mesh unit NCHRC Number of characters for stress unit LABELC Name of stress unit

Card Group		Input Data and Definitions (Post File)
11		NLTIME, TIME _{REF} TIME ₁ , TIME ₂ ,, TIME _{NLTIME}
		NLTIME Number of specified times (Max=1000) TIME _{REF} Reference time TIME Specified time
	ion)	If TIME $_{\text{REF}}$ is not equal to 0.0, Stress at TIME $_{\text{i}}$ are relative to TIME $_{\text{REF}}$
ormatio	oistribut	NGROUP, IAVG, ISCRIN, IMESH, IPSTRS
PLOT-2D Plot Information	For NPTYPE = 2 (Principal Stress Distribution)	NGROUP = 0 Plot stresses at all elements > 0 Plot stresses at specified groups (Max=1000)
PLOT-2	: 2 (Princi	IAVG = 0 Do not plot averages = 1 Plot average stresses
	NPTYPE =	ISCRIN = 0 Do not screen the data = 1 Screen the data
	For	IMESH = 0 Do not plot meshes = 1 Plot meshes
		IPSTRS = 0 Do not store principal stresses = 1 Store principal stresses on file PSTRS.DAT

Card Group		Input Data and Definitions (Post File)
11	For NPTYPE = 2 (Principal Stress Distribution)	If NGROUP = 0, Skip this Card NGROUP NSS, NEE, NIC, NNN Cards L Refer to Card Group 11.2.6 11.3.7 NRL NRL Number of nodes to be connected by a solid line (Max=5000) 11.3.8 If NRL = 0, Skip this Card NODE, NODE,, NODE, L NODE Reference node numbers. If NODE, has negative sign, a New Line is drawn

Card Group		Input Data and Definitions (Post File)
	For NPTYPE = 3 (Deformed Shape)	Input Data and Definitions (Post File) 11.4.1 TITLE TITLE Any title of up to 70 characters 11.4.2 IUNIT IUNIT = 1 In = 2 Cm = 3 User-specified unit 11.4.3 For IUNIT = 3 NCHR LABEL NCHR Number of characters for mesh and displacement unit. LABEL Name of mesh and displacement unit 11.4.4 NLTIME, TIME _{REF} TIME ₁ , TIME ₂ ,, TIME _{NLTIME} NLTIME Number of specified times (Max=1000) TIME _{REF} Reference time TIME Specified time If TIME _{REF} is not equal to 0.0, Displacement at TIME, are relative to TIME _{REF}

Card Group		Input Data and Definitions (Post File)
PLOT-2D Plot Information	For NPTYPE = 3 (Deformed Shape)	Row and Line Plots (Repeat in any order) For Row Plot> 1, IDISP NSR, JCR, NJR, ICR, NIR For Line Plot> 2, IDISP NPT NODE ₁ , NODE ₂ ,, NODE _{NPT} For End Plot> 0, 0 IDISP = 0 Undeformed shape = 1 Deformed shape = 2 Displacement vector For Row Plot (Max = 1000) NSR Starting node number of row plot JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Solution 15 20 20 20 20 20 20 20 2

TITLE TI
IUNIT = 1 In, Psi = 2 Cm, Kg/cm² = 3 User-specified unit Section Policy Polic

Card Group		Input Data and Definitions (Post File)
11	11.5	NLTIME, TIME _{REF} TIME ₁ , TIME ₂ ,, TIME _{NLTIME} NLTIME Number of specified times (Max=1000) TIME _{REF} Reference time TIME Specified time If TIME _{REF} is not equal to 0.0, Section force / Stress / Strain plots at TIME _i are relative to TIME _{REF}
PLOT-2D Plot Information	For NPTYPE = 4 (Beam Section Force / Extreme Fiber Stress / Strain)	NBTS NBTS = 1 Thrust = 2 Shear in member y direction = 3 Shear in member z direction = 4 Torque = 5 Bending moment about y axis = 6 Bending moment about z axis See Figure PL-4 for Sign Convention
	For NPTYPE = 4 (NBGROUP NBGROUP Number of beam groups (Max=280)

Card Group		Input Data and Definitions (Post File)				
	NPTYPE = 4 (Beam Section Force / Extreme Fiber Stress / Strain)		NBLIST = 0 Elements from NFBEAM to NLBEAM = 1 Listing of individual elements 11.5.7.2 For NBLIST = 0 NFBEAM, NLBEAM NFBEAM Starting beam element number NLBEAM Ending beam element number 11.5.7.3 For NBLIST = 1 MBEAM N ₁ , N ₂ ,, N _{MBEAM} MBEAM Number of beam element (Max=280) List of element number 8 L NRL Number of nodes to be connected by a Solid Line (Max=280)			
	For NP	NC NC	NRL = 0, Skip this Card $NRL = 0$, NODE ₂ ,, NODE _{NRL} $NRL = 0$			
		IV	If NODE; has negative sign, a New Line is drawn			

Card Group	Input Data and Definitions (Post File)				
	For NPTYPE = 5 (Truss Axial Force / Stress / Strain)	Input Data and Definitions (Post File) 11.6.1 TITLE TITLE Any title (Max = 70 characters) 11.6.2 IUNIT IUNIT = 1 In, Pound = 2 Cm, Kg = 3 User-specified unit 11.6.3 For IUNIT = 3 NCHR LABEL NCHRT LABELT NCHR Number of characters for mesh unit LABEL Name of mesh unit NCHRT Number of characters for axial data LABELT Name of axial force / stress / strain			

11 11.6 11.6.4	Card Group	Input Data and Definitions (Post File)				
NLTIME, TIME _{REF} TIME ₁ , TIME ₂ ,, TIME _{NLTIME} NLTIME Number of specified times (Max=1000) TIME _{REF} Reference time TIME Specified times If TIME _{REF} is not equal to 0.0, Force / Stress / Strain at TIME _i are relative to TIME _{REF} NTTS NTTS	11 11.	NLTIME, $TIME_{REF}$ $TIME_{1}$, $TIME_{2}$,, $TIME_{NLTIME}$ NLTIME Number of specified times (Max=1000) $TIME_{REF}$ Reference time $TIME$ Specified times				

Card Group	Input Data and Definitions (Post File)				
PLOT-2D Plot Information	For NPTYPE = 5 (Truss Axial Force / Stress / Strain)	11.6 <u>If</u> NO	NRL Number of nodes to be connected by a Solid Line (Max=280)		

Card Group	Input Data and Definitions (Post File)			
	6 (Contours of Continuum Element Data)	Input Data and Definitions (Post File) 11.7.1 TITLE TITLE Any title (Max = 70 characters) 11.7.2 IUNIT IUNIT = 1 In, Pound = 2 Cm, Kg = 3 User-specified unit 11.7.3 For IUNIT = 3 NCHR LABEL NCHRC LABELC		
PLOT-2D			NCHR Number of characters for mesh unit LABEL Name of mesh unit NCHRC Number of characters for contouring data LABELC Name of contouring data	
	For NPTYPE =	NLTIME, TIME _{REF} TIME ₁ , TIME ₂ ,, TIME _{NLTIME} NLTIME Number of specified times (Max=1000) TIME _{REF} Reference time TIME Specified time If TIME _{REF} is not equal to 0.0, Contour plots at TIME _i are relative to TIME _{REF}		

Card Group		Input Data and Definitions (Post File)				
	= 6 (Contours of Continuum Element Data)	Input Data and Definitions (Post File) 11.7.5 NCTS NCTS Variable to be plotted. Select from Table PL-1 11.7.6 DELTA, IRES, IRGP, IENL, R _x , R _y DELTA = -DELTA Line contour, absolute value of DELTA is desired contour interval = 0 Color-filled contour = 2 Smoothed color-filled contour IRES = 0 Draft copy = 1 Fine copy IRGP = 0 Values at ref. grid points are not added = 1 Values at ref. grid points are added				
P	For NPTYPE = 6 (Cor	$= 2 \text{Laplacian \& spline interpolation scheme} \\ = 3 \text{Davis distance to a power interpolation} \\ \\ \frac{\text{For IENL} = 2}{\text{R}_{x}} \text{Weight factor applied to spline function} \\ \text{If R}_{x} = 0.0, \text{ only Laplacian interpolation is used} \\ \text{R}_{y} \text{ is not used} \\ \\ \frac{\text{For IENL} = 3}{\text{R}_{y}} \text{Power applied to 1/(distance **power)} \\ \text{interpolation scheme. Recommended starting} \\ \text{value is 4.0. R}_{x} \text{ is not used} \\ \text{Reference [Davis, J.c., 1986, Statistics and} \\ \text{Data Analysis in Geology, page 356]} \\ \\ \\ }$				

Card Group	Input Data and Definitions (Post File)			
	For NPTYPE = 6 (Contours of Continuum Element Data)	Input Data and Definitions (Post File) 11.7.7 NGROUP NGROUP = 0 Plot at all elements > 0 Plot at specified groups (Max=1000) 11.7.8 If NGROUP = 0, Skip this Card NGROUP Cards NSS, NEE, NIC, NNN Refer to Card Group 11.2.6 11.7.9 NRL NRL NRL Number of nodes to be connected by a Solid Line (Max=5000) 11.7.10 If NRL = 0, Skip this Card NODE ₁ , NODE ₂ ,, NODE _{NRL} NODE Reference node numbers If NODE ₁ has negative sign, a New Line is drawn		

Card Group	Input Data and Definitions (Post File)				
	7 (Stress State in p-q Space and Octahedral Plane)	Input Data and Definitions (Post File) 11.8.1 TITLE TITLE Any title of up to 70 characters 11.8.2 LABELC LABELC Label for stress unit 11.8.3 NLTIME TIME ₁ , TIME ₂ ,, TIME _{NLTIME} NLTIME Number of specified times (Max=10) TIME Specified time			
	For NPTYPE = 7 (Stress State in	NUMNEL NEL ₁ , NEL ₂ ,, NEL _{NUMNEL} NUMNEL Number of specified elements (Max=10) NEL Element number			

Table PL-1 Continuum Contour Plot

NCTS	Legend	Description	
		Continuum Element (See	e Fig. PL-1)
2 3 4 5 6 7	STRESS-XX STRESS-YY STRESS-ZZ STRESS-XY STRESS-YZ STRESS-XZ	Normal XX stress Normal YY stress Normal ZZ stress Shear XY stress Shear YZ stress Shear XZ stress	(σ_{x}') (σ_{y}') (σ_{z}') (τ_{xy}) (τ_{yz})
8	PRESSURE	Mean pressure	(P′)
9	FLUID-PRES	Fluid pressure	(π)
10	TSTRESS-XX	Normal XX total stress	$(\sigma_{x} = \sigma_{x'} + \Pi)$ $(\sigma_{y} = \sigma_{y'} + \Pi)$ $(\sigma_{z} = \sigma_{z'} + \Pi)$ $(P = P' + \Pi)$ $(Q = (3/\sqrt{2}) T_{oct})$
11	TSTRESS-YY	Normal YY total stress	
12	TSTRESS-ZZ	Normal ZZ total stress	
13	TPRESSURE	Total mean pressure	
14	D.STRES	Deviatoric stress	
15 16 17 18 19 20 21	STRAIN-XX STRAIN-YY STRAIN-ZZ STRAIN-XY STRAIN-YZ STRAIN-XZ VOL-STRAIN	Normal XX strain Normal YY strain Normal ZZ strain Shear XY strain Shear YZ strain Shear XZ strain Volumetric strain	$\begin{array}{l} (\epsilon_x) \\ (\epsilon_y) \\ (\epsilon_z) \\ (\gamma_{xy}) \\ (\gamma_{yz}) \\ (\gamma_{xz}) \\ (\epsilon_y) \end{array}$
22	GAMMA-OCT	Octahedral shear strain	(γ _{oct})
23	TAU-OCT	Octahedral shear stress	(τ _{oct})
24	FS	Safety factor	(Fig. PL-2)
25	YIELD-FLAG	Yield flag	(Fig. PL-3)
26	STRESS - 1	Major principal stress	(σ_1 ')
27	STRESS - 2	Inter. principal stress	(σ_2 ')
28	STRESS - 3	Minor principal stress	(σ_3 ')

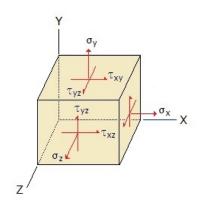


Figure PL-1 Sign Conventions for Continuum Stress

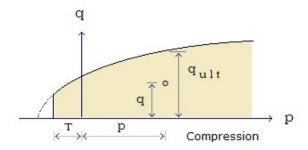


Figure PL-2 Definition of Safety Factor

Factor of Safety (FS) is defined as:

For elastic material

FS = 10

 $FS = q_{ult}/q$ For elasto-plastic material

FS is limited to $1 \le F.S. \le 10$

For $p \leq -T$ FS = 1

 $P = (\sigma_x + \sigma_y + \sigma_z) / 3$

 $q = (3 / \sqrt{2}) T_{oct}$

Yield Flag for Beam and Continuum Elements

Yield Flag	Stress Status
0	Stress point is in elastic
1	Stress point is in plastic
2	Stress Point develops crack

Stress Status for Truss Element

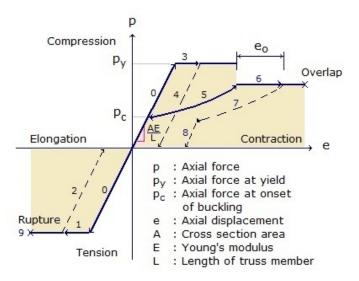
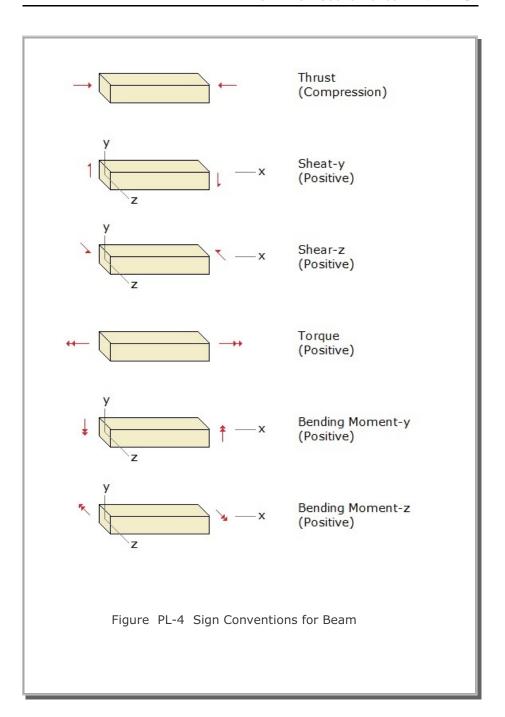
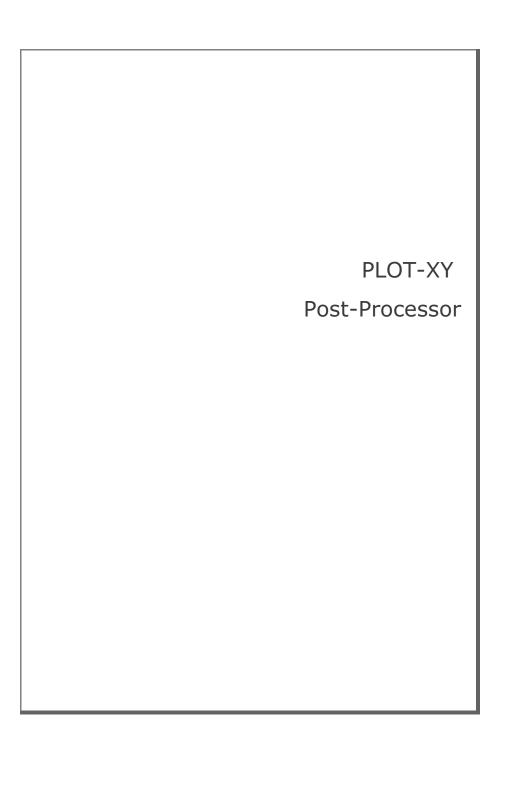




Figure PL-3 Description of Stress Status

Card Group		Input Data and Definitions (Post File)
12	12.1	
	IPTYPE	
	IPTYPE	
	0	End of plotting output
		Standard Time history
	1	Stress/Strain/Time
	2	Displacement/Velocity/Accel./Time
		Standard Snapshot
_	3	Stress/Strain vs. Distance
tior	4	Displacement/Velocity/Accel. vs. Distance
PLOT-XY Information		Simplified Time history
Info	5	Stresses/Strains for a Given Element
	6	Stress/Strain Pair for Different Elements
	7	Displacements/Velocities/Accel. for a Given Node
PL(8	Displacement/Velocity/Accel. Pair for Different Nodes
		Simplified Snapshot
	9	Stresses/Strains for a Given Time
	10	Stress/Strain for Different Times
	11	Displacements/Velocities/Accel. for a Given Time
	12	Displacement/Velocity/Accel. for Different Times
	Nistra	Circulified also (IDT)/DE E to 12) also led by accessful
	Note:	Simplified plots (IPTYPE 5 to 12) should be specified
		after standard plots. You can edit simplified plots using PlotXY Generator in SMAP Run Menu.
		using Floori Generator in Start Rail Hella.

Card Group		Input Data and Definitions (Post File)
	For IPTYPE = 1 (Stress / Strain / Time History)	Input Data and Definitions (Post File) 12.2.1 IPLOT IPLOT = 0 For each specified element, Number of different pair of variables = 1 For each specified pair of variables, Number of different element data 12.2.2 NOEL NOEL NOEL NUMBER OF Elements (Max 10) 12.2.3 LIST (I) I = 1, NOEL LIST (I) List element numbers 12.2.4 NDPQ NDPQ NUMBER OF different pair of variables

Card Group		Input Data and Definitions
Group 12.2 (Xious)	1 (Stress / Strain / Time History)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PLOT-XY Information	For IPTYPE = 1 (Stress / Strai	TMFAC, STFAC, SNFAC Multiplication factor TMFAC Time STFAC Stress SNFAC Strain 12.2.7 IPLOT = 0: For each element IPLOT = 1: For each pair of variables TITLE (50 characters) X - LABEL (50 characters) Y - LABEL (50 characters)

Group		Input Data and Definitions (Post File)
12 1	For IPTYPE = 2 (Displacement / Velocity / Acceleration / Time History)	Input Data and Definitions (Post File) 12.3.1 IPLOT IPLOT = 0 For each specified node,

Card Group		Input Data and Definitions (Post File)
PLOT-XY Information	For IPTYPE = 2 (Displacement / Velocity / Acceleration / Time History)	NDPQ NDPQ NDPQ NUMber of different pair of variables 12.3.5 NDPQ Kx1, Ky1 Kx2, Ky2 Cards Cards Kx, Ky Select from Table PL-2 12.3.6 TMFAC, SND, SNV, SNA, NC, ANGLE Multiplication factor TMFAC Time SND Displacement SNV Velocity SNA Acceleration NC = 0 No transfer = 1 Transfer from X-Y to polar coordinate = 2 Transfer from polar to X-Y coordinate ANGLE Rotation angle (Degree) 12.3.7 IPLOT = 0: For each node IPLOT = 1: For each pair of variables TITLE (50 characters) X-LABEL (50 characters) Y-LABEL (50 characters) Y-LABEL (50 characters)

Card Group		Input Data and Definitions (Post File)
	For IPTYPE = 3 (Stress / Strain vs. Distance Snapshot)	ISCALD, ILTNUM, XSTART ISCALD = 0 Unscaled distance = 1 Scaled distance ILTNUM = 0 Do not list element numbers = 1 List Element No vs Value in PlotXy.Lin XSTART Reference starting X-coordinate Note: If ISCALD = 1 and ILTNUM = 1, X-LABEL is used for distance unit
l l	For IPTYPE = 3 (Stree	NRL N ₁ , N ₂ , N _{NRL} For sequential order > 2 NSTAR, NINCR, NPONT For end of generation > 0 NRL N ₁ , N ₂ ,, N _{NRL} Element numbers NSTAR Starting element numbers NINCR Element number increment NPONT Number of element

Card Group		Input Data and Definitions (Post File)
Group	For IPTYPE = 3 (Stress / Strain vs. Distance Snapshot)	Input Data and Definitions (Post File) 12.4.8 STFAC, SNFAC, SDFAC Multiplication factor STFAC Stress SNFAC Strain SDFAC Distance 12.4.9 IPLOT = 0: For each specified time IPLOT = 1: For each variable TITLE (50 characters) X-LABEL (50 characters) Y-LABEL (50 characters)

Card Group		Input Data and Definitions (Post File)
	For IPTYPE = 4 (Displacement / Velocity / Acceleration vs. Distance Snapshot)	Input Data and Definitions (Post File) 12.5.1 IPLOT IPLOT = 0 For each specified time, Number of different variables = 1 For each specified variable, Number of different time data 12.5.2 NOTM NOTM Number of times (Max 10) 12.5.3 TLIST (I), I = 1, NOTM TLIST (I) List times in sequential order 12.5.4 NDPQ NDPQ Number of different variables 12.5.5 NDPQ K _{y2} Cards -
		K _y Select from Table PL-2

Card Group		Input Data and Definitions (Post File)
	4 (Displacement / Velocity / Acceleration vs. Distance Snapshot)	Input Data and Definitions (Post File) 12.5.6 ISCALD, ILTNUM, XSTART ISCALD = 0 Unscaled distance = 1 Scaled distance ILTNUM = 0 Do not list node numbers = 1 List Node No vs Value in PlotXy.Lin XSTART Reference starting X-coordinate Note: If ISCALD = 1 and ILTNUM = 1, X-LABEL is used for distance unit
PLOT-XY Inf	For IPTYPE = 4 (Displacement / Velocity / A	

Card Group		Input Data and Definitions (Post File)		
12	12.5	12.5.7		
		Node Number Specification (Max 800 nodes)		
	n vs. Distance Snapshot)	For Arbitrary Order $>$ 1 NRL ${ m N}_{ m 1}, { m N}_{ m 2},, { m N}_{ m NRL}$		
	e Snap	For Sequential Order > 2 NSTAR, NINCR, NPONT		
	tanc	For End Generation > 0		
PLOT-XY Information	Acceleration vs. Di	NRL Number of nodes N ₁ ,N ₂ ,,N _{NRL} Node numbers NSTAR Starting node numbers NINCR Node number increment NPONT Number of nodes		
DT-XY I	locity /	SND, SNV, SNA, NC, ANGLE, SDFAC		
DTIG	PLOT	olacement / Velo	lacement / Ve	Multiplication factor SND Displacement SNV Velocity SNA Acceleration
		NC = 0 No transfer = 1 Transfer from X-Y to polar coordinate = 2 Transfer from polar to X-Y coordinate		
	For IPTYPE =	ANGLE Rotation angle (Degree) SDFAC Multiplication factor for distance		
		IPLOT = 0: For each specified time IPLOT = 1: For each variable		
		TITLE (50 characters) X-LABEL (50 characters) Y-LABEL (50 characters)		

Card Group		Input Data and Definitions		
PLOT-XY Information	For IPTYPE = 5 (Time History of Stresses/Strains for a Given Element)	NEL Element number		
		NDQ Number of different quantities		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		TMFAC, STFAC, SNFAC		
		IPTYPE = 5	Multiplication factor TMFAC Time STFAC Stress SNFAC Strain	
			TITLE (50 characters) X - LABEL (50 characters) Y - LABEL (50 characters)	

Card Group	Input Data and Definitions		
Group 12 PLOT-XY Information	For IPTYPE = 6 (Time History of Stress/Strain Pair for Different Elements)	12.7.1 NOEL NOEL NUMBER of elements (Max 10) 12.7.2 LIST (I) I = 1, NOEL LIST (I) List element numbers 12.7.3 K _x , K _y K _x , K _y Select from Table PL-1 12.7.4 TMFAC, STFAC, SNFAC Multiplication factor TMFAC Time STFAC Stress SNFAC Strain 12.7.5 TITLE (50 characters) X - LABEL (50 characters) Y - LABEL (50 characters)	

Card Group	Input Data and Definitions		
12	NOD Node number		
(abo)	NDQ Number of different quantities		
PLOT-XY Information For IDTYPE = 7 (Time History of Displacements (Vel /Accel for a Given Node)	12.8.5		

Card Group		Input Data and Definitions
PLOT-XY Information	For IPTYPE = 8 (Time History of Displ./Vel./Accel. Pair for Different Nodes)	NODE NODE NODE NUMBER of nodes (Max 10) 12.9.2 LIST (I) I = 1, NODE LIST (I) List node numbers 12.9.3 K _x , K _y K _x , K _y Select from Table PL-2 12.9.4 TMFAC, SND, SNV, SNA Multiplication factor TMFAC Time SND Displacement SNV Velocity SNA Acceleration 12.9.5 TITLE (50 characters) X - LABEL (50 characters) Y - LABEL (50 characters)

Card Group	Input Data and Definitions		
PLOT-XY Information For IPTYPE = 9 (Snap Shot of Stresses/Strains for a Given Time)	TIME TIME Specified time 12.10.2 NDQ NDQ NDQ NDQ NDQ NDQ NDQ ND		

Card Group		Input Data and Definitions		
	For IPTYPE = 10 (Snap Shot of a Stress/Strain for Different Times)	Input Data and Definitions 12.11.1 NOTM NOTM Number of times (Max 10) 12.11.2 TLIST (I), I = 1, NOTM TLIST (I) List times in sequential order 12.11.3 K _y K _y Select from Table PL-1 12.11.4 XSTART XSTART XSTART Reference starting X-coordinate 12.11.5 Element Number Specification (Max 800 Elements) NRL N ₁ , N ₂ , N _{NRL} NRL NRL Number of elements N ₁ , N ₂ ,, N _{NRL} Element numbers N ₁ , -N ₁₊₁ , N ₁₊₂ From N ₁ to N ₁₊₁ with increment N ₁₊₂ 12.11.6 STFAC, SNFAC, SDFAC Multiplication factor STFAC Stress SNFAC Strain SDFAC Distance		
		TITLE (50 characters) X - LABEL (50 characters) Y - LABEL (50 characters)		

Card Group		Input Data and Definitions		
PLOT-XY Information	For IPTYPE = 11 (Snap Shot of Displacements/Vel./Accel for a Given Time)	TIME TIME Specified time		
		NDQ NDQ Number of different quantities		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		XSTART Reference starting X-coordinate		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		SND, SNV, SNA, SDFAC Multiplication factor SND Displacement SNV Velocity SNA Acceleration SDFAC Distance		
		TITLE (50 characters) X - LABEL (50 characters) Y - LABEL (50 characters)		

Card Group		Input Data and Definitions		
PLOT-XY Information	TLIST (1) 12.13.3 Ky Ky 12.13.4 XSTART XSTART XSTART XSTART NRL N1, N2, N, NRL N1, N2, N, NI, -Ni+ 12.13.6 SND, SNV, SND SNV SNA SDFAC	I = 1, NOTM Select from Table PL-2 T Reference starting X-coordinate ber Specification (Max 800 Nodes) Number of nodes Node numbers Node numbers From N _i to N _{i+1} with increment N _{i+2} SNA, SDFAC Multiplication factor Displacement Velocity Acceleration		

Table PL-1 (IPTYPE = 1, 3, 5, 6, 9, 10)

K _x , K _y	Legend	Description	
1	TIME	Time	(t)
2 3 4 5 6 7	STRESS-XX STRESS-YY STRESS-ZZ STRESS-XY STRESS-YZ STRESS-XZ	Continuum Element (See Normal XX stress Normal YY stress Normal ZZ stress Shear XY stress Shear YZ stress Shear XZ stress	e Fig. PL-1) $(\sigma_{x'})$ $(\sigma_{y'})$ $(\sigma_{z'})$ (τ_{xy}) (τ_{yz}) (τ_{xz})
8	PRESSURE	Mean pressure	(Р′)
9	FLUID-PRES	Fluid pressure	(п)
10	TSTRESS-XX	Normal XX total stress	$(\sigma_{x} = \sigma_{x'} + \Pi)$ $(\sigma_{y} = \sigma_{y'} + \Pi)$ $(\sigma_{z} = \sigma_{z'} + \Pi)$ $(P = P' + \Pi)$ $(Q = (3/\sqrt{2}) T_{oct})$
11	TSTRESS-YY	Normal YY total stress	
12	TSTRESS-ZZ	Normal ZZ total stress	
13	TPRESSURE	Total mean pressure	
14	D.STRES	Deviatoric stress	
15 16 17 18 19 20 21	STRAIN-XX STRAIN-YY STRAIN-ZZ STRAIN-XY STRAIN-YZ STRAIN-XZ VOL-STRAIN	Normal XX strain Normal YY strain Normal ZZ strain Shear XY strain Shear YZ strain Shear XZ strain Volumetric strain	$ \begin{array}{l} (\varepsilon_{x}) \\ (\varepsilon_{y}) \\ (\varepsilon_{z}) \\ (\gamma_{xy}) \\ (\gamma_{yz}) \\ (\gamma_{xz}) \\ (\varepsilon_{v}) \end{array} $
22	GAMMA-OCT	Octahedral shear strain	(Y _{oct})
23	TAU-OCT	Octahedral shear stress	(T _{oct})
24	FS	Safety factor	(Fig. PL-2)
25	YIELD-FLAG	Yield flag	(Fig. PL-3)
26	STRESS - 1	Major principal stress	(σ_1')
27	STRESS - 2	Inter. principal stress	(σ_2')
28	STRESS - 3	Minor principal stress	(σ_3')

Table PL-1 continued

K _x , K _y	Legend	Description	
		Beam Element (See Fig.	PL-4)
35	THRUST	Thrust	(F _x)
36	SHEAR-Y	Shear in y direction	(F _v)
37	SHEAR-Z	Shear in z direction	(F ₇)
38	TORQUE	Torque	(T)
39	MOMENT-Y	Moment about y axis	(M _v)
40	MOMENT-Z	Moment about z axis	(M _z)
41	STRAIN-FT	Top fiber strain	$(\varepsilon_{ m ft})$
42	STRESS-FT	Top fiber stress	$(\sigma_{\rm ft})$
43	STRAIN-RT	Top reinf. bar strain	(ε _{rt})
44	STRESS-RT	Top reinf. bar stress	(σ_{rt})
45	STRAIN-RB	Bot. reinf. bar strain	(ε _{rb})
46	STRESS-RB	Bot. reinf. bar stress	(σ_{rb})
47	STRAIN-FB	Bot. fiber strain	(ε_{fb})
48	STRESS-FB	Bot. fiber stress	(σ_{fb})
49	STRAIN-FL	Left fiber strain	(ε _{fi})
50	STRESS-FL	Left fiber stress	(σ_{fl})
51	STRAIN-RL	Left reinf. bar strain	(ε _{rl})
52	STRESS-RL	Left reinf. bar stress	(σ_{ri})
53	STRAIN-RR	Right reinf. bar strain	(ε _{rr})
54	STRESS-RR	Right reinf. bar stress	(σ_{rr})
55	STRAIN-FR	Right fiber strain	$(\varepsilon_{\rm fr})$
56	STRESS-FR	Right fiber stress	(σ_{fr})
		Truss Element	
61	FORCE-XX	Axial force	(F _x)
62	STRESS-XX	Axial stress	(σ _x)
63	STRAIN-XX	Axial strain	(ε_{x})

Table PL-1 continued

K _x , K _y	Legend	Description
		Shell element section forces and stresses
71 72 73 74 75 76	MOMENT-XX MOMENT-YY MOMENT-XY M-MAX M-MIN MXY-MAX	Bending moment (M _{xx}) Bending moment (M _{yy}) Twisting moment (M _{xy}) Max bending moment (M _{max}) Min bending moment (M _{min}) Max twisting moment (M _{xy max})
77 78 79 80 81 82	SMID-XX SMID-YY SMID-XY SM-MAX SM-MIN SMXY-MAX	$\begin{array}{ll} \underline{\text{Mid-surface stress}} \\ \text{Normal xx stress} & (\sigma_{\text{xx mid}}) \\ \text{Normal yy stress} & (\sigma_{\text{yy mid}}) \\ \text{Shear xy stress} & (\sigma_{\text{xy mid}}) \\ \text{Max normal xx stress} & (\sigma_{\text{max mid}}) \\ \text{Min normal yy stress} & (\sigma_{\text{min mid}}) \\ \text{Max shear xy stress} & (\sigma_{\text{xy max mid}}) \end{array}$
83 84 85 86 87 88	STOP-XX STOP-YY STOP-XY ST-MAX ST-MIN STXY-MAX	$\begin{array}{lll} \hline \text{Top-surface stress} \\ \hline \text{Normal xx stress} & (\sigma_{\text{xx top}}) \\ \hline \text{Normal yy stress} & (\sigma_{\text{yy top}}) \\ \hline \text{Shear xy stress} & (\sigma_{\text{xy top}}) \\ \hline \text{Max normal xx stress} & (\sigma_{\text{max top}}) \\ \hline \text{Min normal yy stress} & (\sigma_{\text{min top}}) \\ \hline \text{Max shear xy stress} & (\sigma_{\text{xy max top}}) \\ \hline \end{array}$
89 90 91 92 93 94	SBOT-XX SBOT-YY SBOT-XY SB-MAX SB-MIN SBXY-MAX	$\begin{array}{lll} \underline{\text{Bottom-surface stress}} \\ \text{Normal xx stress} & (\sigma_{\text{xx bot}}) \\ \text{Normal yy stress} & (\sigma_{\text{yy bot}}) \\ \text{Shear xy stress} & (\sigma_{\text{xy bot}}) \\ \text{Max normal xx stress} & (\sigma_{\text{max bot}}) \\ \text{Min normal yy stress} & (\sigma_{\text{min bot}}) \\ \text{Max shear xy stress} & (\sigma_{\text{xy max bot}}) \end{array}$
95 96 97 98 99	ASTRES-XT ASTRES-YT ASTRES-XB ASTRES-YB TMOMENT-XX TMOMENT-YY	Rebar axial stress and total moment Top rebar x direction axial stress $(\sigma_{xx \text{ top}})$ Top rebar y direction axial stress $(\sigma_{yy \text{ top}})$ Bot. rebar x direction axial stress $(\sigma_{xx \text{ bot}})$ Bot. rebar y direction axial stress $(\sigma_{yy \text{ bot}})$ Total bending moment about x axis $(M_{xx \text{ total}})$ Total bending moment about y axis $(M_{yy \text{ total}})$
		Note: Moments per unit width (See Fig. PL-5)

Table PL-2 (IPTYPE = 2, 4, 7, 8, 11, 12)

K _x , K _y	Legend	Description	
1	TIME	Time	(t)
		Skeleton displacem	nent
2	X-DIS.	X-displacement	(u _x)
3	Y-DIS.	Y-displacement	(u _y)
4	Z-DIS.	Z-displacement	(u _z)
5	X-VEL.	X-velocity	(u _x)
6	Y-VEL.	Y-velocity	(u _y)
7	Z-VEL.	Z-velocity	(u _z)
8	X-ACC.	X-acceleration	(u _x)
9	Y-ACC.	Y-acceleration	(u _v)
10	Z-ACC.	Z-acceleration	(u _z)
		Relative fluid displa	acement
11	R.FL.X-DIS	X-displacement	$(w_x = n (U_x - u_x))$
12	R.FL.Y-DIS	Y-displacement	(w _v)
13	R.FL.Z-DIS	Z-displacement	(W _z)
14	R.FL.X-VEL	X-velocity	(w _x)
15	R.FL.Y-VEL	Y-velocity	(w _v)
16	R.FL.Z-VEL	Z-velocity	(W _z)
17	R.FL.X-ACC	X-acceleration	(w _x)
18	R.FL.Y-ACC	Y-acceleration	(W _y)
19	R.FL Z-ACC	Z-acceleration	(W _z)

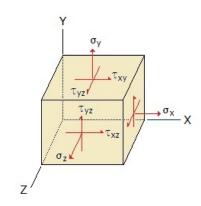


Figure PL-1 Sign Conventions for Continuum Stress

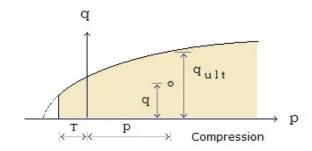


Figure PL-2 Definition of Safety Factor

Factor of Safety (FS) is defined as:

For elastic material FS = 10

For elasto-plastic material $\mbox{ FS}=q_{\mbox{\tiny ult}}/\ q$ FS is limited to $\mbox{ 1} \le \mbox{ F.S. } \le 10$ For p $\mbox{ } \le \mbox{ } -T$ $\mbox{ FS}=\mbox{ 1}$

$$P = (\sigma_x + \sigma_y + \sigma_z) / 3$$

q = (3 / $\sqrt{2}$) T_{oct}

Yield Flag	Stress Status for Beam & Continuum Element
0	Stress point is in elastic
1	Stress point is in plastic
2	Stress Point develops crack

Stress Status for Truss Element

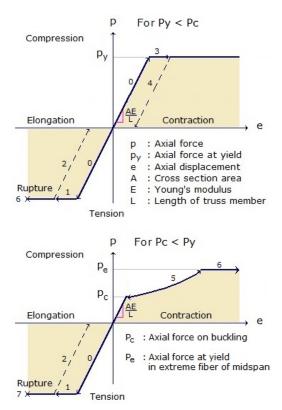
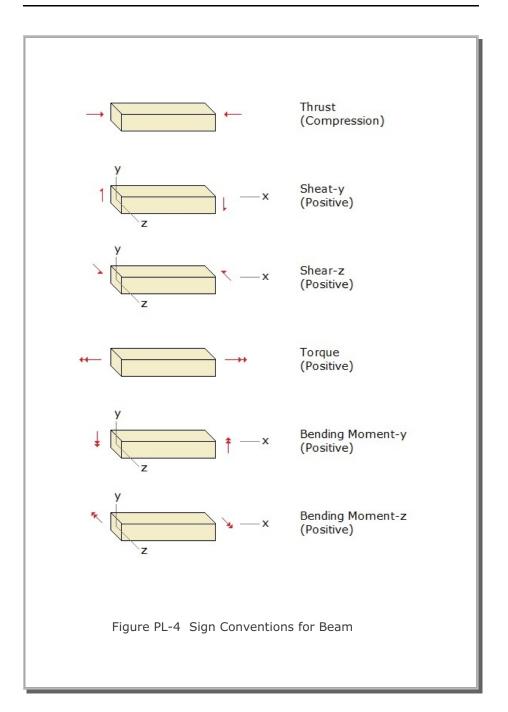
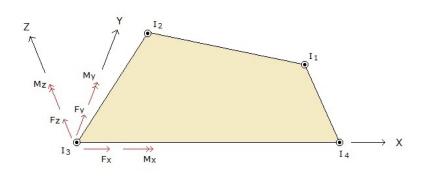
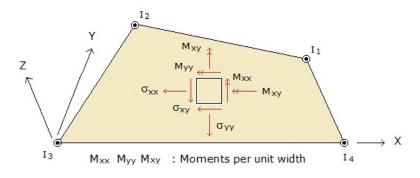





Figure PL-3 Description of Stress Status

Shell Member End Section Forces at Element Nodes [Output File SHELSF.DAT]

Shell Stresses and Moments at Element Center [Output File: SHELSM.DAT]

Figure PL-5 Sign Conventions for Shell

Group Mesh User's Manual

5.1 Introduction

Group Mesh Generator is a two-dimensional CAD program specially designed to build group mesh which can be used to generate finite element mesh with the aid of program ADDRGN-2D.

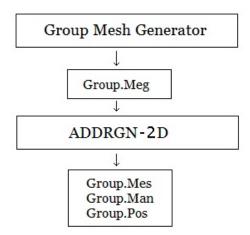


Figure 5.1 Flow diagram of group mesh generation

Group.Meg contains group mesh data that can be generated or modified by Group Mesh Generator. The file Group.Meg is used as input to the program ADDRGN-2D, thereby generating finite element mesh file Group.Mes along with the main file Group.Man for element activity and the post file Group.Pos for PLOT-2D plot.

Group Mesh Generator can be accessed through SMAP menu Run or Plot as explained in Section 5.2.

ADDRGN-2D can be accessed from SMAP menu: Run \rightarrow Mesh Generator \rightarrow AddRgn \rightarrow Addrgn 2D. This program can also be accessed indirectly by executing F. E. Mesh Plot in Group dialog as explained in Section 5.3.8.

5.2 Group Mesh Generator

Group Mesh Generator can be accessed by selecting the following menu items in SMAP:

```
Run → Mesh Generator → Group Mesh or
Plot → Mesh → Group Mesh
```

When you build new group mesh, you can select either Built-in Base Mesh or Existing Finite Element Mesh. Built-in Base Mesh is explained in detail in Section 5.4.

Once you click OK button in Group Input dialog, PLOT-2D program is displayed along with group menu which is the main access to Group Mesh Generator.

When click Group menu in PLOT-2D, Group dialog is displayed.

5.3 Group

Group dialog in Figure 5.2 is the main dialog associated with group mesh generation or modification. Group dialog consists of following eight parts:

- Group Identity
- MTYPE and Material Parameter
- Line Options
- · Coordinate Constraint
- Element Activity
- PLOT-2D Plot
- Translation
- Command Buttons

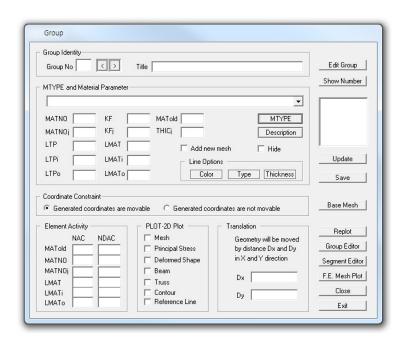


Figure 5.2 Group dialog.

5.3.1 Group Identity

Here, you type Group No and Title.

When you add a new group, first select an appropriate MTYPE and change all default parameters as you want. Then click Add Group button to build the geometry of new group.

When you type the existing Group No, all parameters of that group are shown on the screen. Click Edit Group button to modify the geometry of the group.

It should be noted that Add Group and Edit Group buttons share the same position in the Group dialog. And Add Group for new group and Edit Group for existing group will appear.

5.3.2 MTYPE and Material Parameter

MTYPE dialog with icons and MTYPE list box with brief explanations are shown in Figures 5.3 and 5.4, respectively.

You can select MTYPE from the list box or by clicking MTYPE button which opens MTYPE dialog with icons.

Selection of proper MTYPE is the most important to model the desired group. Once you select MTYPE, all input variables and options available for that MTYPE will be shown on the screen along with default values.

Figure 5.3 MTYPE dialog

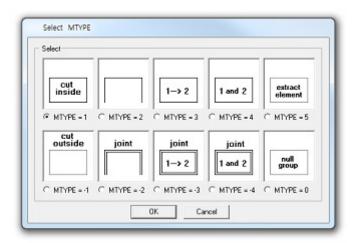


Figure 5.4 MTYPE list box

1: Generate lines & remove elements within closed loop

1: Generate lines & remove elements within closed loop

1: Remove elements outside closed loop

2: Generate lines

2: Generate slip lines with joint elements

3: Assign new material number within closed loop

3: Generate joint elements in addition to MTYPE = 3

4: Same as MTYPE = 3 but keep old & add new materials

4: Same as MTYPE =-3 but keep old & add new materials

5: Extract elements within a closed loop

0: Nullify the Current Group No

Click Description button to see description of material parameters and element activity as shown in Figure 5.5.

Add new mesh check box is available only for MTYPE = 3. When checked, new group is formed without interfering with the other groups.

Hide check box is to hide the current group geometry on the screen when checked.

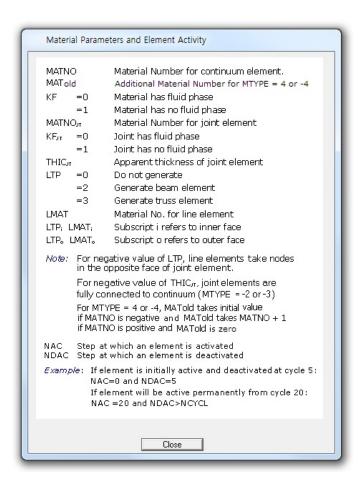


Figure 5.5 Material parameters & element activity (SMAP-2D)

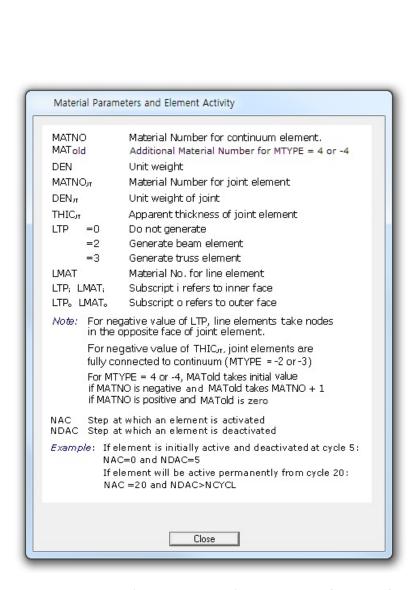


Figure 5.5 Material parameters & element activity (SMAP-S2)

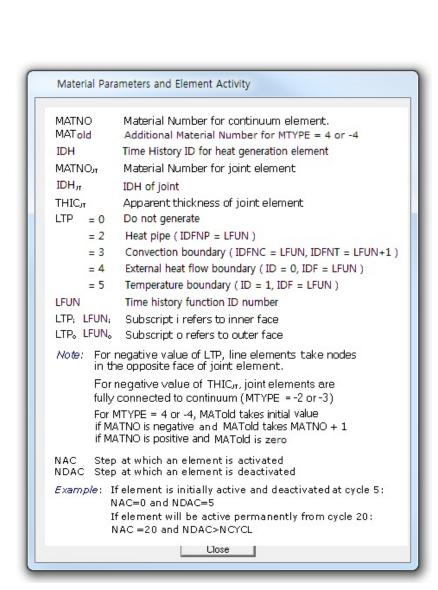
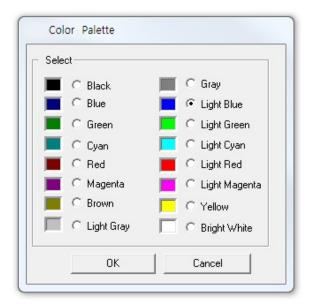



Figure 5.5 Material parameters & element activity (SMAP-T2)

5.3.3 Line Options

Line options are provided to distinguish the outline of the group from the other groups. Figure 5.6 shows available line color, line type and line thickness.

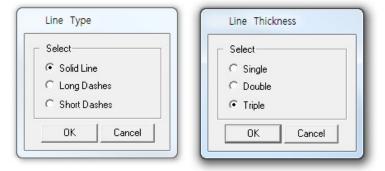


Figure 5.6 Line options.

5.3.4 Coordinate Constraint

Finite element meshes are generated when you click F. E. Mesh Plot button.

Normally, finite element nodal coordinates associated with the current group are adjusted to get the overall optimum meshes by selecting Generated coordinates are movable.

However, you can make such generated coordinates not movable by selecting Generated coordinates are not movable.

5.3.5 Element Activity

Element activity data is used in SMAP main program Card group 8. Elements in current group is to activate at step NAC and deactivate at step NDAC. Such activity data is generated and saved in Group.Man when executing group mesh, that is, by clicking F. E. Mesh Plot button.

Examples of element activity are shown at bottom of Fig. 5.5.

5.3.6 PLOT-2D Plot

PLOT-2D Plot data is used in SMAP post processing program PLOT-2D to plot computed results available for the current group. Such plot information is generated and saved in Group.Pos when executing group mesh.

It should be noted that SMAP post processing program PLOT-3D can automatically produce all such plots.

5.3.7 Translation

Translation is mainly used to move the geometry of the current group in x and y directions. Here D_x and D_y represent relative distances from the current position of the group to the new position.

Once you type in D_x and D_y , you need to click Update and then Replot buttons to confirm the translation of the current group.

5.3.8 Command Buttons

Command buttons are shown on the right side of Group dialog.

Add Group

This is used to build the geometry of the new group. Line Segment dialog in Figure 5.14 will be displayed.

Edit Group

This is used to modify the geometry of the existing group.

Edit Segment dialog in Figure 5.7 will be displayed.

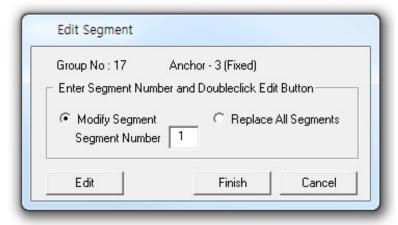


Figure 5.7 Edit segment dialog.

Show Number

This is used to show group and segment numbers.

Plot Group / Segment No dialog in Figure 5.8 will be displayed.

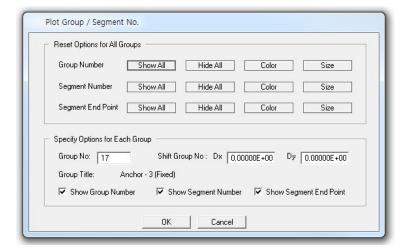


Figure 5.8 Plot Group / Segment No dialog.

Update

This is used to update the current group parameters shown on the screen. It should be noted that you need to click **Update** button before leaving the current group. Leaving the current group without clicking Update will not update all the changes you made on the current group.

Save

This is used to save all the works you have done . This includes updating the current group parameters shown in the Group dialog.

Base Mesh

This is used to edit Built-in Base Mesh which is explained in detail in Section 5.4. Base Mesh dialog in Figure 5.13 will be displayed.

Replot

This is used to show the geometry of groups you have updated so far.

Group Editor

This is used to delete, cut and paste, or copy and paste specified groups. Group Editor dialog in Figure 5.9 will be displayed.

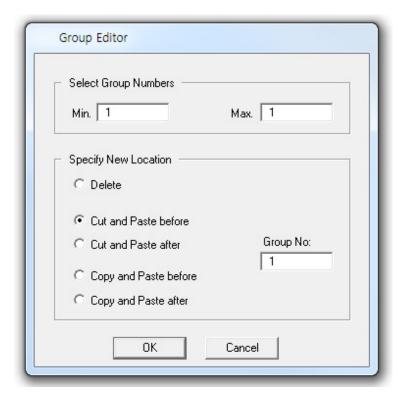


Figure 5.9 Group editor dialog.

Segment Editor

This is used to add or modify the segments of the existing group based on text input. Segment Editor dialog in Figure 5.10 will be displayed.

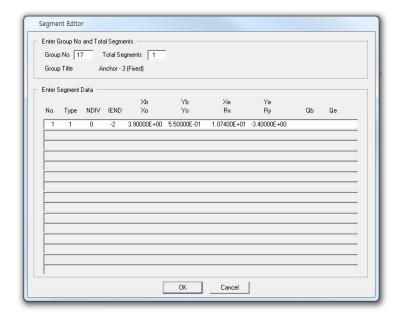


Figure 5.10 Segment editor dialog.

F. E. Mesh Plot

This is used to execute the group mesh and then plot the generated finite element mesh. It should be noted that you need to click Save button before executing F. E. Mesh Plot.

Once executed, new sub directory Plot_Mesh under working directory will be created along with following files:

Group.Man Mesh file with finite element.
Group.Man Main file with element activity.
Group.Pos Post file with PLOT-2D plot data.

This is used to close the Group dialog.

Exit

This is used to exit from the Group Mesh Generator.

Exit dialog in Figure 5.11 will be displayed.

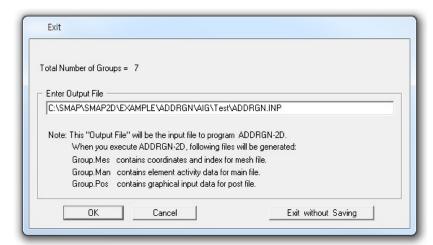


Figure 5.11 Exit dialog.

5.4 Base Mesh

Base Mesh is the finite element mesh where you build group meshes. You can select either Built-in Base Mesh or Existing Finite Element Mesh at the time when you first build new group mesh as discussed in Section 5.2.

5.4.1 Built-in Base Mesh

Figure 5.12 shows layout of Built-in Base Mesh which consists of rectangular blocks that will be filled with finite elements.

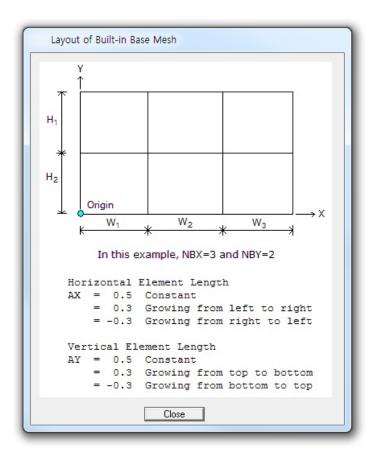


Figure 5.12 Layout of built-in base mesh.

Figure 5.13 shows Built-in Base Mesh dialog which is used to edit block dimensions, element sizes and boundary conditions.

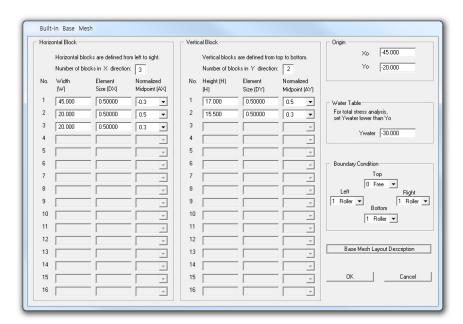
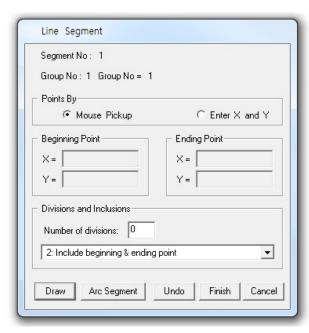


Figure 5.13 Built-in base mesh dialog.

5.4.2 Existing Finite Element Mesh


You can provide existing finite element mesh file to be used as base mesh. Group meshes will be built on this finite element mesh.

5.5 Segment

There are two types of segments, Line and Arc Segments which are used to build a group. Segment dialog will be displayed when you click Add Group or Edit Group button on the Group dialog screen.

5.5.1 Line Segment

Figure 5.14 Line segment dialog.

Line Segment dialog is shown in Figure 5.14.

Segment No

Current segment number will be displayed automatically.

Group No & Title

Current group number and title will be displayed automatically.

Point By

Select Mouse Pickup or Enter X and Y.

Beginning & Ending Point

Coordinates of beginning and ending points are required when Enter X and Y is selected.

Divisions and Inclusions

Use following default values.

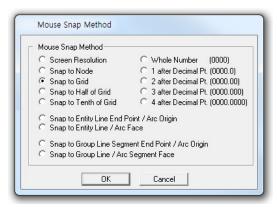
Number of divisions 0

Combo box selection 2: Include beginning & ending point

Draw

Draw line segment.

For Mouse Pickup,


- 1. Click Draw button.
- 2. Move the mouse to the point and click left mouse button. Or hold down left mouse button, move the mouse and release the button at the point.

Note 1:

It is important to choose an appropriate mouse snap method before drawing by mouse. Mouse snap dialog in Figure 5.15 can be opened by clicking Mouse-Snap menu in PLOT-2D.

For example, when you choose Snap to Grid, mouse cursor will automatically move to the nearest grid point.

Figure 5.15 Mouse snap dialog

For Enter X and Y,

- 1. Type in the coordinates of beginning and ending points.
- 2. Click Draw button.

Note 2:

You can draw many segments continuously by repeating above Mouse Pickup or Enter X and Y procedure.

Arc Segment

Switch to arc segment.

Undo the changes you just made for line segment.

Finish and exit from drawing the current group.

Cancel

Cancel and exit from drawing the current group.

5.5.2 Arc Segment

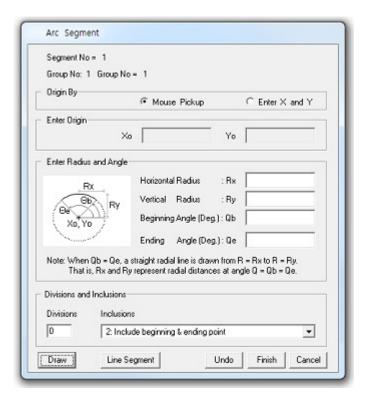


Figure 5.16 Arc segment dialog.

Arc Segment dialog is shown in Figure 5.16.

Segment No

Current segment number will be displayed automatically.

Group No & Title

Current group number and title will be displayed automatically.

Origin By

Select Mouse Pickup or Enter X and Y.

Enter Origin

Coordinates of origin are required for Enter X and Y.

Enter Radius and Angle

Enter Horizontal & vertical radii, and beginning & ending angles.

Divisions and Inclusions

Use following default values.

Number of divisions 0

Combo box selection 2: Include beginning & ending point

Draw

Draw arc segment.

For Mouse Pickup,

- 1. Type in R_x , R_y , Θ_b , Θ_e
- 2. Click Draw button
- 3. Move the mouse to the origin and click left mouse button. Or hold down left mouse button, move the mouse and release the button at the origin.

For Enter X and Y,

- 1. Type in X_o , Y_o , R_x , R_y , Θ_b , Θ_e
- 2. Click Draw button

Refer to Note 1 & 2 in Section 5.5.1.

Line Segment

Switch to line segment.

Undo

Undo the changes you just made for arc segment.

Finish

Finish and exit from drawing the current group.

Cancel

Cancel and exit from drawing the current group.

5.6 Modifying Finite Element Meshes

Group Mesh Generator can be used to directly modify finite element meshes.

When you open input file, Mesh Generator reads the extension of the input file name and it assumes that the input file is the finite element mesh file if the extension is .Mes.

Editing finite element meshes has three parts: Nodal Boundary, Nodal Coordinate and Element Material. These editing modes can be accessed from Mesh menu in PLOT-2D as shown in Figure 5.17.

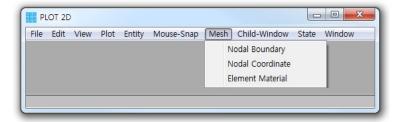
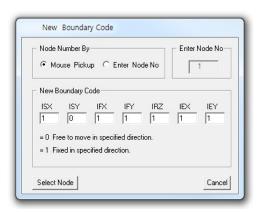


Figure 5.17 Menu for editing finite element mesh

It should be noted that once you edited the finite element meshes, modified finite element mesh is saved as MeshFile.Mes in the current working directory. The original input mesh file is not changed.


5.6.1 Edit Nodal Boundary

When you click Nodal Boundary from the Mesh menu, Edit Boundary dialog will be displayed.

5.6.1.1 Mouse Pickup

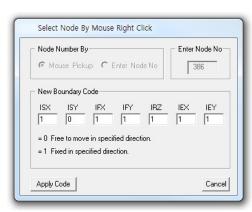

When you select Mouse Pickup mode as in Figure 5.18, you are supposed to select node number by mouse click. Click Select Node button.

Figure 5.18 Edit boundary (Mouse Pickup)

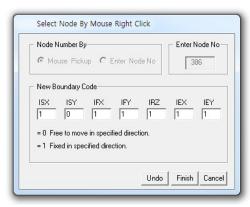
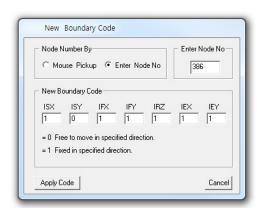

Click the node by Mouse Right Click, edit boundary codes and then click Apply Code button in Figure 5.19.

Figure 5.19 Edit boundary (Apply Code)

You can repeat the same procedure many times for other nodes. Once finished, click Finish button in Figure 5.20.

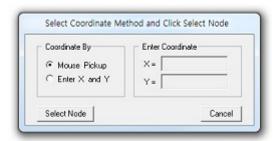

Figure 5.20 Edit boundary (Finish)

5.6.1.2 Enter Node No

When you select Enter Node No mode as in Figure 5.21, you are supposed to type in node number. Edit boundary codes and then click Apply Code button.

Figure 5.21 Edit boundary (Enter Node No)

You can repeat the same procedure many times for other nodes. Once finished, click Finish button.


5.6.2 Edit Nodal Coordinate

When you click Nodal Coordinate from the Mesh menu, Edit Coordinate dialog will be displayed.

5.6.2.1 Mouse Pickup

When you select Mouse Pickup mode as in Figure 5.22, you are supposed to select node number by mouse click. Click Select Node button.

Figure 5.22 Edit coordinate (Mouse Pickup)

Select the node number by Mouse Right Click and then move the coordinate by Mouse Left Click. It is convenient to select an appropriate Mouse-Snap method in Figure 5.23 before moving the coordinates.

Figure 5.23 Mouse snap method

Mouse Snap Method	
 Screen Resolution 	C Whole Number (0000)
C Snap to Node	 1 after Decimal Pt. (0000.0)
C Snap to Grid	© 2 after Decimal Pt. (0000.00)
C Snap to Half of Grid	© 3 after Decimal Pt. (0000.000)
C Snap to Tenth of Grid	 4 after Decimal Pt. (0000.0000
C Snap to Entity Line End I C Snap to Entity Line / Arc	

You can repeat the same procedure many times for other nodes. Once finished, click Finish button in Figure 5.24.

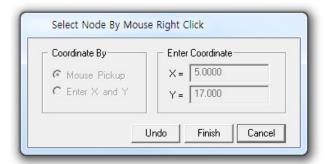


Figure 5.24 Edit coordinate (Finish)

5.6.2.2 Enter X and Y

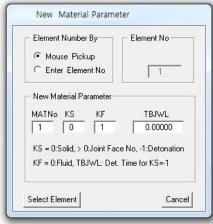
When you select Enter X and Y mode as in Figure 5.25, you are supposed to type in nodal coordinates. Type in X and Y coordinates and then click Apply button.



Figure 5.25 Edit coordinate (Enter X and Y)

You can repeat the same procedure many times for other nodes. Once finished, click Finish button.

5.6.3 Edit Element Material


When you click Element Material from the Mesh menu, Edit Element Material dialog will be displayed.

5.6.3.1 Mouse Pickup

When you select Mouse Pickup mode as in Figure 5.26, you are supposed to select element number by mouse click.

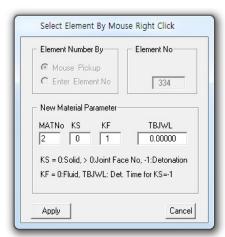
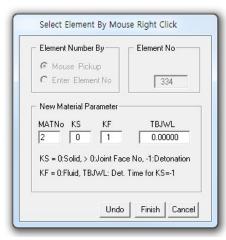

Click Select Element button.

Figure 5.26 Edit element material (Mouse Pickup)

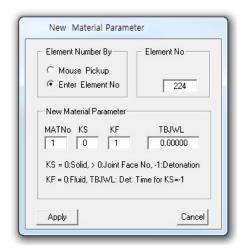
Click the element by Mouse Right Click, edit material parameters and then click Apply button in Figure 5.27.


Figure 5.27 Edit element material (Apply)

You can repeat the same procedure many times for other elements. Once finished, click

Finish button in Figure 5.28.

Figure 5.28 Edit element material (Finish)



5.6.3.2 Enter Element No

When you select Enter Element No mode as in Figure 5.29, you are supposed to type in element number. Edit material parameters and then click Apply button.

Figure 5.29 Edit element material (Enter Element No)

You can repeat the same procedure many times for other elements. Once finished, click Finish button.

5.7 Entities

Entities are graphical objects which are mainly used to assist editing the geometry of groups and elements.

There are four types of entities: Mark, Line, Arc, and Text.

Entities can be accessed from Entity menu in PLOT-2D as shown in Figure 5.30.

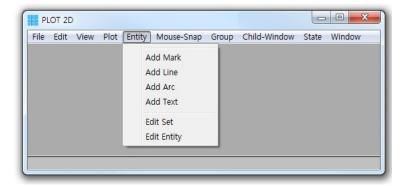


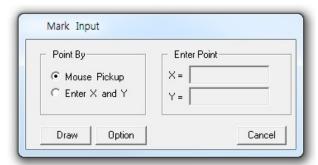
Figure 5.30 Entity menu

Entity menu has six parts:

Add Mark, Add Line, Add Arc, Add Text, Edit Set and Edit Entity.

First four Add Entities are to build new entities.

Edit Set is to assign entity set so that each plot number can include only selected entities.


Edit Entity is to modify, delete or replace the selected entity.

5.7.1 Add Mark

Marks are graphical symbols which are mainly used to assist editing the geometry of groups and elements.

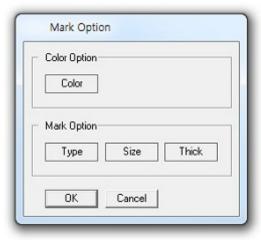

When you select Add Mark submenu, Mark Input dialog in Figure 5.31 is displayed.

Figure 5.31 Mark input (Mouse Pickup)

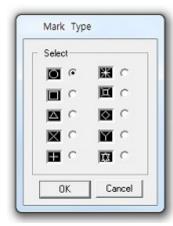
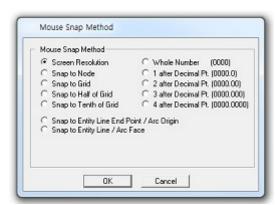

Option button is to show Mark Option in Figure 5.32.

Figure 5.32 Mark option dialog

Available Mark Types are shown in Figure 5.33.


Figure 5.33 Mark type dialog

5.7.1.1 Mouse Pickup

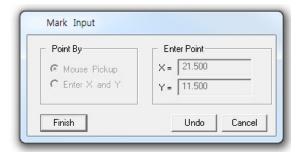
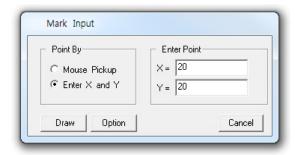

When you select Mouse Pickup mode as in Figure 5.31, you are supposed to select the mark center position by mouse click. Click Draw button and then move the position by Mouse Left Click. It is convenient to select an appropriate Mouse-Snap method in Figure 5.34 before moving the position.

Figure 5.34 Mouse snap method

Once finished, click Finish button in Figure 5.35.


Figure 5.35 Mark input (Finish)

5.7.1.2 Enter X and Y

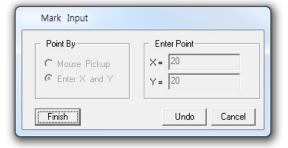
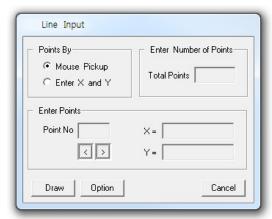

When you select Enter X and Y mode as in Figure 5.36, you are supposed to type in the coordinates of the mark center position. Click Draw button.

Figure 5.36 Mark input (Enter X and Y)

Once finished, click Finish button in Figure 5.37.

Figure 5.37 Mark input (Finish)



5.7.2 Add Line

Lines are graphical objects which are mainly used to assist editing the geometry of groups and elements.

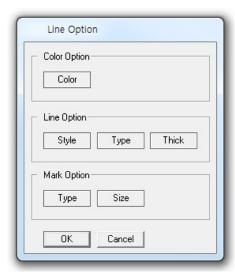

When you select Add Line submenu, Line Input dialog in Figure 5.38 is displayed.

Figure 5.38 Line input (Mouse Pickup)

Option button is to show Line Option in Figure 5.39.

Figure 5.39 Line option dialog

Available Line Styles are shown in Figure 5.40.

Figure 5.40 Line style dialog

Available Line Types are shown in Figure 5.41.

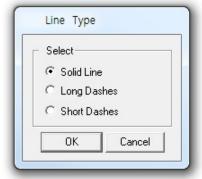


Figure 5.41 Line type dialog

5.7.2.1 Mouse Pickup

When you select Mouse Pickup mode as in Figure 5.38, you are supposed to select the line end point by mouse click. Click Draw button and then select the point by Mouse Left Click.

It is convenient to select an appropriate Mouse-Snap method in Figure 5.34 before moving the coordinate.

You can click many points to build continuous lines. Once finished, click Finish button in Figure 5.42.

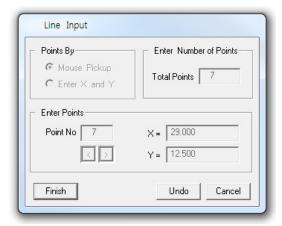
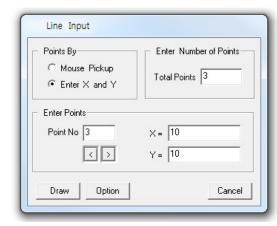



Figure 5.42 Line input (Finish)

5.7.2.2 Enter X and Y

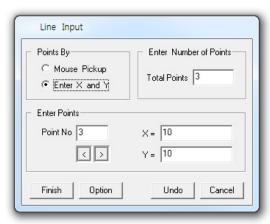
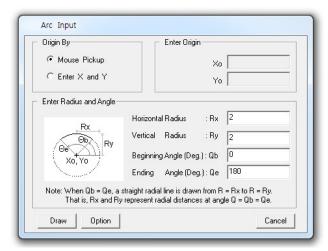

When you select Enter X and Y mode as in Figure 5.43, you are supposed to type the coordinates of the line. Click Draw button.

Figure 5.43 Line input (Enter X and Y)

And then click Finish button in Figure 5.44.

Figure 5.44 Line input (Finish)



5.7.3 Add Arc

Arcs are graphical objects which are mainly used to assist editing the geometry of groups and elements.

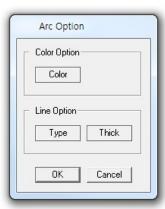

When you select Add Arc submenu, Arc Input dialog in Figure 5.45 is displayed.

Figure 5.45 Arc input (Mouse Pickup)

Option button is to show Arc Option in Figure 5.46.

Figure 5.46 Arc option dialog

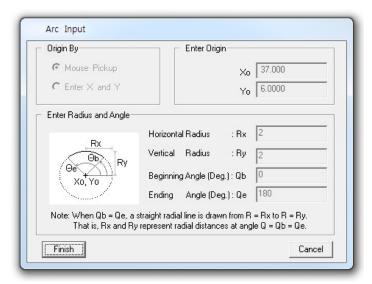
5.7.3.1 Mouse Pickup

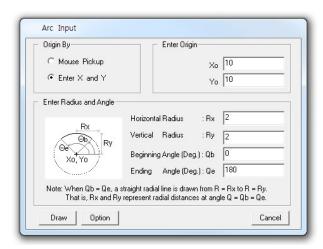
When you select Mouse Pickup mode as in Figure 5.45, you are supposed to select the arc origin by mouse click.

Type in Horizontal Radius, Vertical Radius, Beginning Angle and Ending Angle.

Click Draw button and then select the origin by Mouse Left Click. It is convenient to select an appropriate Mouse-Snap method in Figure 5.34 before moving the coordinate.

Once finished, click Finish button in Figure 5.47.




Figure 5.47 Arc input (Finish)

5.7.3.2 Enter X and Y

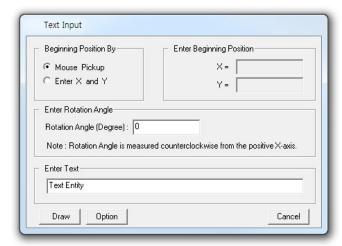
When you select Enter X and Y mode as in Figure 5.48, you are supposed to type in the coordinates of the arc origin.

Type in Horizontal Radius, Vertical Radius, Beginning Angle and Ending Angle. And then click Draw button.

Figure 5.48 Arc input (Enter X and Y)

Once finished, click Finish button in Figure 5.49.

Figure 5.49 Arc input (Finish)


Origin By	Enter Origin	
C Mouse Pickup	Xo	10
€ Enter X and Y	Yo	
Enter Radius and Angle		· ·
_	Horizontal Radius : Rx	2
Rx Sb o	Vertical Radius : Ry	2
Oe Xo, Yo	Beginning Angle (Deg.): Qb	0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ending Angle (Deg.): Qe	180
	a straight radial line is drawn from R Ry represent radial distances at ang	
Fineh		Undo Cance

5.7.4 Add Text

Texts are characters which are mainly used to assist describing the geometry of groups and elements.

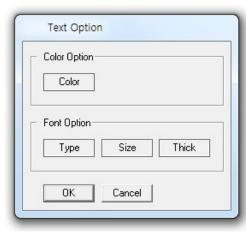

When you select Add Text submenu, Text Input dialog in Figure 5.50 is displayed.

Figure 5.50 Text input (Mouse Pickup)

Option button is to show Text Option in Figure 5.51.

Figure 5.51 Text option dialog

Available Font Sizes are shown in Figure 5.52. Font Size Select-C Very Smal (0.04 inch) Smal (0.08 inch) C Medium (0.10 inch) C Large (0.12 inch) Cancel Figure 5.52 Font size dialog

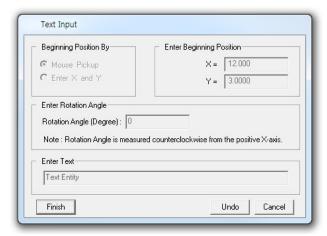
5.7.4.1 Mouse Pickup

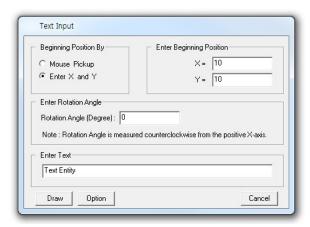
When you select Mouse Pickup mode as in Figure 5.50, you are supposed to select the beginning position of text by mouse click.

Type in Rotation Angle and Text.

Click Draw button and then select the beginning position of the text by Mouse Left Click. It is convenient to select an appropriate Mouse-Snap method in Figure 5.34 before moving the coordinate.

Once finished, click Finish button in Figure 5.53.




Figure 5.53 Text input (Finish)

5.7.4.2 Enter X and Y

When you select Enter X and Y mode as in Figure 5.54, you are supposed to type in the coordinates of beginning position of text.

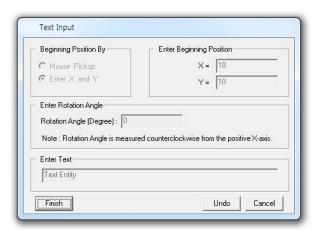
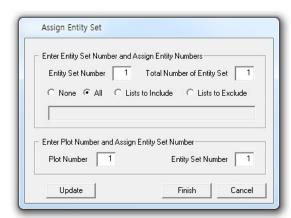

Type in Rotation Angle and Text. And then click Draw button.

Figure 5.54
Text input
(Enter X and Y)

Once finished, click Finish button in Figure 5.55.

Figure 5.55 Text input (Finish)

5.7.5 Edit Set


Edit Set is to assign Entity Set as shown in Figure 5.56.

Edit Set consists of two parts:

- 1. Enter Entity Set Number and assign Entity Numbers.
- 2. Enter Plot Number and assign Entity Set Number.

Every time Enter Set Number or Plot Number is changed, click Update button. When finished, click Finish button.

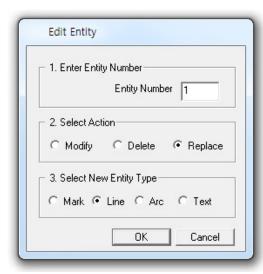
Figure 5.56 Assign entity set dialog

5.7.5.1 Enter Entity Set No & Assign Entity No

Here, you enter Entity Set Number, Total Number of Entity Set and then select Option for the current set.

When Lists to Include option is selected, type in entity numbers to be included in the current set.

When Lists to Exclude option is selected, type in entity numbers to be excluded in the current set.


5.7.5.2 Enter Plot No & Assign Entity Set No

Here, you enter Plot Number and assign Entity Set Number.

5.7.6 Edit Entity

Edit Entity is to modify, delete or replace the selected entity as shown in Figure 5.57.

Figure 5.57 Edit entity dialog

5.7.6.1 Modify

Modify is to modify the current entity.

When OK button is clicked, Entity Input dialog corresponding to the current entity is displayed. Follow the same procedure as described in Add Entity.

5.7.6.2 Delete

Delete is to delete the current entity.

5.7.6.3 Replace

Replace is to replace the current entity by new entity type.

When OK button is clicked, Entity Input dialog corresponding to the new entity type is displayed. Follow the same procedure as described in Add Entity.

Block Mesh User's Manual

6.1 Introduction

Block Mesh Generator is a three-dimensional CAD program specially designed to build block mesh which can be used to generate finite element mesh with the aid of program PRESMAP-GP.

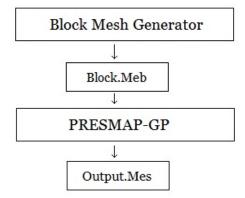


Figure 6.1 Flow diagram of block mesh generation

Block.Meb contains block mesh data that can be generated or modified by Block Mesh Generator. The file Block. Meb is used as input to the program PRESMAP-GP, thereby generating finite element mesh file Output.Mes.

Block Mesh Generator can be accessed through SMAP menu Run or Plot as explained in Section 6.2.

PRESMAP-GP can be accessed from SMAP menu: Run → Mesh Generator → PreSmap → Presmap GP. This program can also be accessed indirectly by executing Show F. E. Mesh in Block Editor dialog in Section 6.5.8.

6.2 Block Mesh Generator

Block Mesh Generator can be accessed by selecting the following menu items in SMAP:

Run → Mesh Generator → Block Mesh or Plot → Mesh → Block Mesh

When you build new block mesh, PLOT-3D program in Figure 6.2 is displayed along with Work Plane Editor in Figure 6.3.

Click Block Editor toolbar in Figure 6.4. Building new block is discussed in detail in Section 6.5.8.

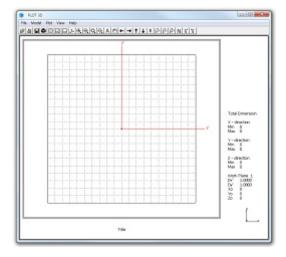


Figure 6.2 Prebuilt work plane on PLOT-3D

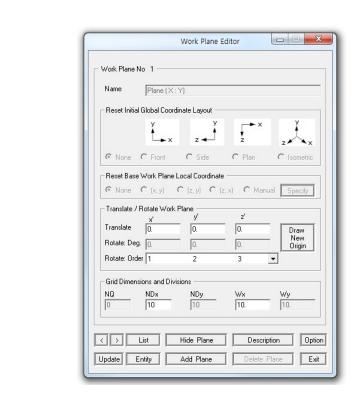


Figure 6.3 Prebuilt work plane editor

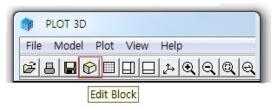


Figure 6.4 Block editor toolbar

When you open existing block mesh, Select Open in SMAP menu as shown in Figure 6.5 and then select the input file. Block mesh will be displayed on PLOT-3D as in Figure 6.6.

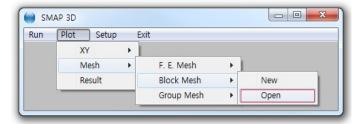


Figure 6.5 Open input file dialog

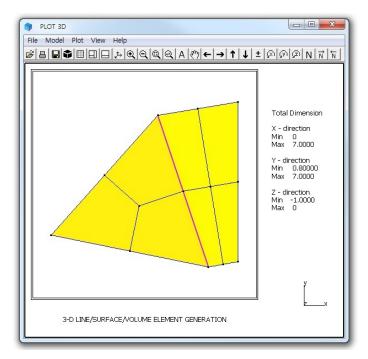


Figure 6.6 Block mesh on PLOT-3D

6.3 Work Plane

Work Planes are rectangular planes with grid lines and local coordinate axes, which are mainly used to assist editing the geometry of blocks and elements.

Work Plane Editor can be accessed by selecting the following menu items in PLOT-3D:

Model → Work Plane → Show Editor

or by clicking Work Plane toolbar as shown in Figure 6.7.

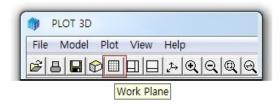
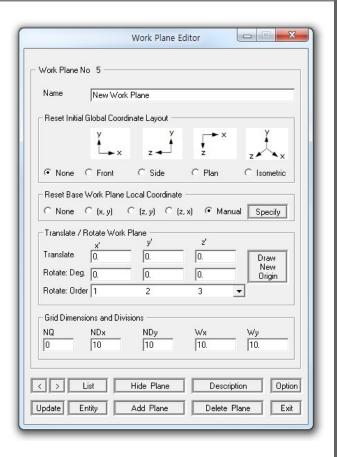


Figure 6.7 Work plane toolbar


Work Plane Editor dialog in Figure 6.8 consists of following six parts:

- Name
- · Reset Initial Global Coordinate Layout
- Reset Base Work Plane Local Coordinate
- Translate / Rotate Work Plane
- · Grid Dimensions and Divisions
- Command Buttons

First three work planes are prebuilt work planes:

(X : Y), (Z : Y) and (Z : X) planes. New work planes can be added by copying one of these prebuilt planes.

Figure 6.8 Work plane editor

6.3.1 Name

Name is work plane name you can specify for identification.

6.3.2 Reset Initial Global Coordinate Layout

This is used to reset initial global coordinate layout. You can select Front, Side, Plan or Isometric views. Once selected, click Update button to see the selected layout.

6.3.3 Reset Base Work Plane Local Coordinate

This is used to reset base work plane local coordinate. You can select (x, y), (z, y), (z, x) or Manual.

For Manual, click Specify button to display Base Work Plane Local Coordinate dialog in Figure 6.9. Base work plane can be specified either by coordinates of three points or by three node numbers.

Once selected, click **Update** button to see the selected local coordinate.

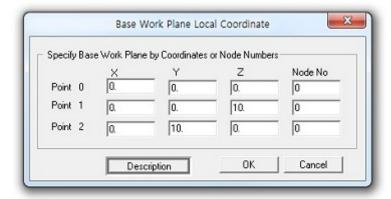


Figure 6.9 Base work plane local coordinate dialog

6.3.4 Translate / Rotate Work Plane

This is used to translate and rotate work plane.

When you rotate about more than one axis, select appropriate rotation order from the list box.

Click Draw New Origin button in Figure 6.8 to display Work Plane Origin dialog in Figure 6.10. This is a convenient way of moving the work plane origin.

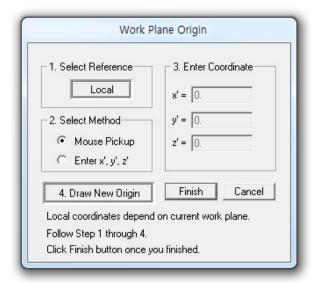


Figure 6.10 Work plane origin dialog

6.3.5 Grid Dimensions and Divisions

You can specify quadrant (NQ), grid divisions (NDx, NDy), and grid dimensions (Wx, Wy) as shown in work plane description in Figure 6.11.

Normally, you set the grid dimensions such that they include all blocks.

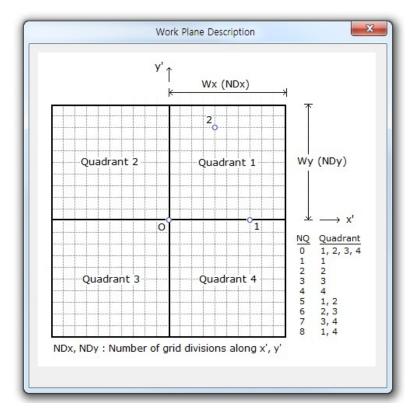


Figure 6.11 Work plane description

6.3.6 Command Buttons

Command buttons are shown on the bottom of Work Plane Editor dialog.

List

This is used to list all available work planes in Figure 6.12.

When you click OK button, selected work plane will be displayed as the current work plane.

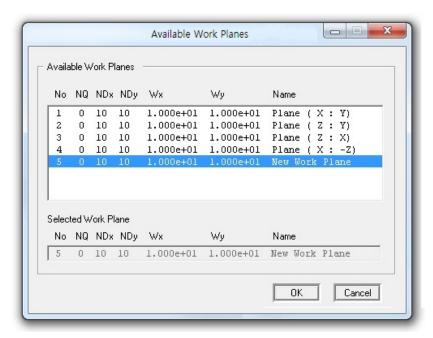


Figure 6.12 Work plane list

Hide Plane

This is used to hide the work plane and entities on the screen.

Description

This is used to show the description of work plane as shown in Figure 6.11.

Option

This is used to open work plane option dialog in Figure 6.13. Click Update button on this dialog to see the changes made by selected options.

Figure 6.13 Work plane option dialog

<u>Update</u>

This is used to update the current work plane parameters shown on the Work Plane Editor dialog.

Entity

This is used to show Entity Editor dialog in Figure 6.17.

Entities are geometric objects under the current work plane, which are mainly used to assist editing the geometry of blocks and elements. Section 6.4 discusses entities in detail.

Add Plane

This is used to add new work plane.

New work plane is made by copying the work plane shown on the dialog. Once you edit work plane parameters, click Update button in the Work Plane Editor dialog to see the changes.

Delete Plane

This is used to delete the current work plane.

Exit

This is used to hide the work plane and exit from the dialog.

6.3.7 Prebuilt Work Planes

First three work planes are prebuilt work planes:

(x : y), (z : y) and (z : x) planes.

These Prebuilt Work Planes can be accessed by selecting the following menu items in PLOT-3D as shown in Figure 6.14:

Model → Work Plane

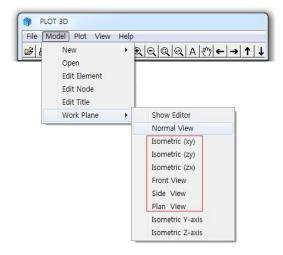


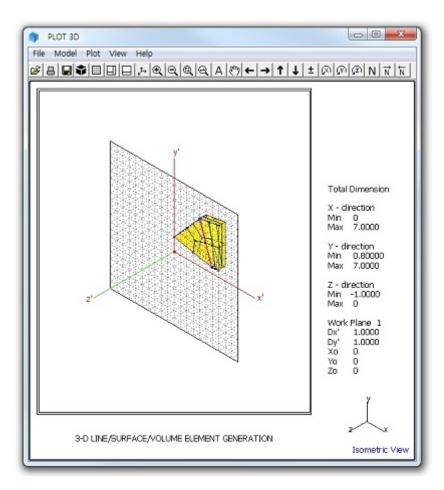
Figure 6.14 Prebuilt work plane menus

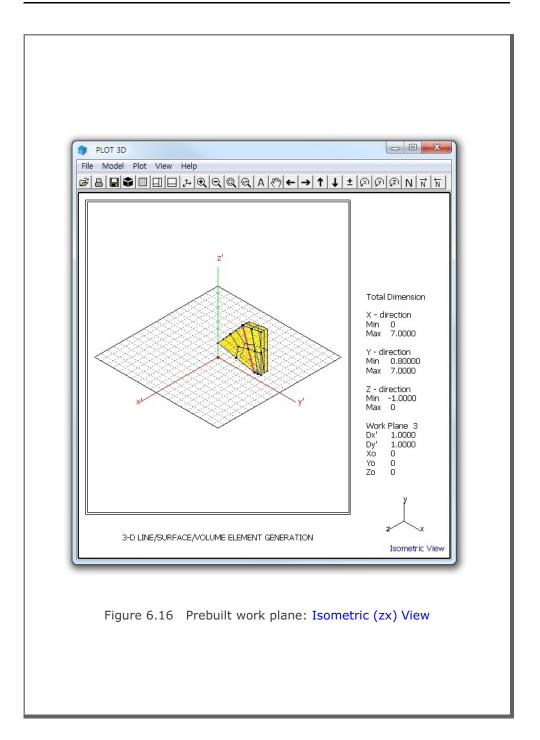
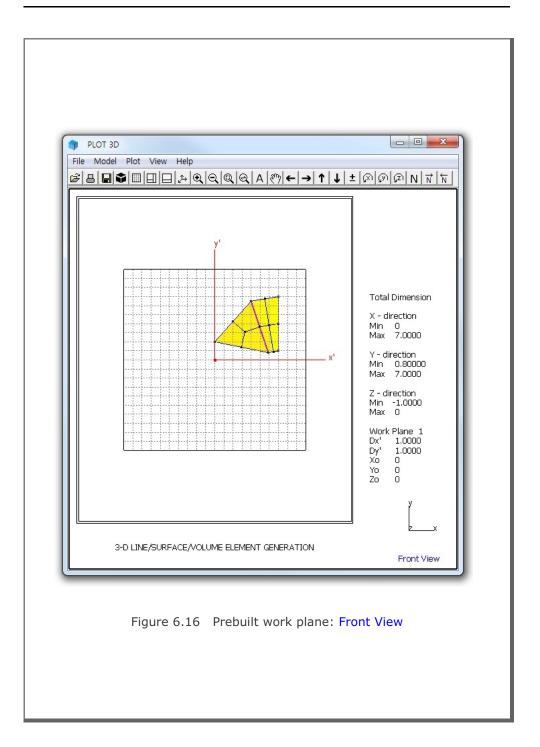
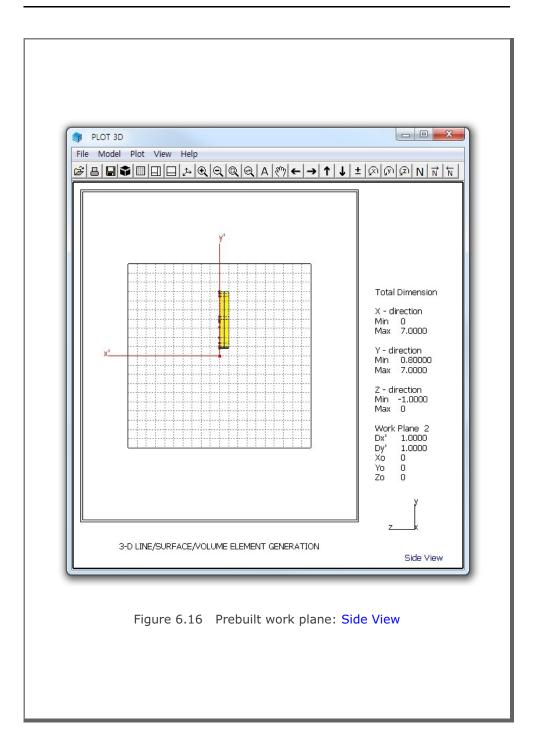
or by clicking Axis toolbar as shown in Figure 6.15.

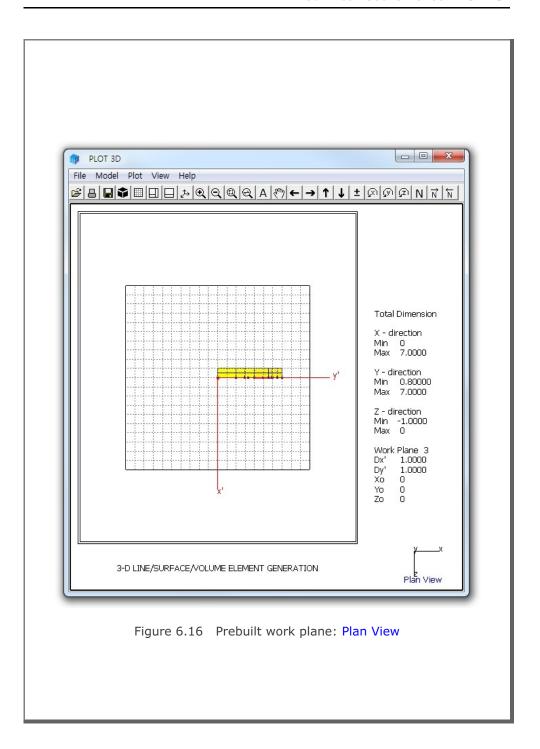


Figure 6.15 Axis toolbar

There are six different views associated with these prebuilt work planes as shown in Figure 6.16: Isometric (xy), Isometric (zy), Isometric (zx), Front, Side and Plan views.




Figure 6.16 Prebuilt work plane: Isometric (xy) View

6.4 Entities

Entities are geometric objects under the work plane, which are mainly used to assist editing geometry of blocks and elements.

There are five types of entities: Line, Arc, Cube, Ellipsoid, and Cylinder.

Entity Editor dialog in Figure 6.17 can be accessed by clicking Entity button on the Work Plane Editor dialog in Figure 6.8.

Entity Editor dialog consists of following seven parts:

- · Entity Number
- · Line Thickness
- · Line Type
- Line Visibility
- Line Color
- Reference Coordinate
- Command Buttons

Figure 6.17 Entity editor dialog

6.4.1 Entity Number

Entity number and type are automatically displayed.

You can edit default entity name.

6.4.2 Line Thickness

Two options are available: Thin and Thick.

6.4.3 Line Type

Two options are available: Solid and Dash.

6.4.4 Line Visibility

Two options are available: Show and Hide.

6.4.5 Line Color

Five options are available: Green, Blue, Red, Grey, and Black.

6.4.6 Reference Coordinate

Two options are available: Local and Global.

6.4.7 Command Buttons

Command buttons are shown on Entity dialog in Figure 6.17.

List

This is used to list all available entities in current work plane.

When you click OK button, selected entity will be displayed as the current entity on the Entity Editor dialog.

Figure 6.18 Entity list dialog

Show Entity No

This is used to show all entity numbers on the screen.

Reset To Global

This is used to reset the current entity global reference by the current local coordinate.

Update

This is used to update parameters of the current entity.

Edit

This is used to edit the geometry of the current entity.

Add

This is used to add new entity. Refer to Section 6.4.9

Delete

This is used to delete the current entity.

Exit

This is used to exit from the Entity Editor dialog.

6.4.8 Popup Menu for Entity

When Entity Editor dialog is opened, you can directly access an entity by Control + Right Click. Then the selected entity is displayed on the Entity Editor dialog along with Popup Menu as shown in Figure 6.19.

Popup Menu consists of eight submenus:

Edit, Copy, Add, Hide, Delete, List, Number and Exit.

These menus are essentially duplicates of command buttons on the Entity Editor dialog.

Figure 6.19 Popup menu for entity

6.4.9 Adding New Entity

To add a new entity, click Add button on Entity Editor dialog. Then Entity Type Selection dialog will be displayed as shown in Figure 6.20.

There are five types of entities:

Line, Arc, Cube, Ellipsoid and Cylinder. You can also select Copy Existing Entity and then type Entity No.

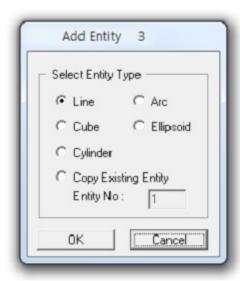
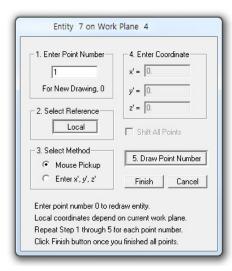


Figure 6.20 Entity type selection dialog

6.4.9.1 Line Entity

Line Entity dialog is shown in Figure 6.21.


To draw Line Entity, follow five steps:

- 1. Enter Point Number
- 2. Select Reference
- 3. Select Method
- 4. Enter Coordinate
- 5. Draw Point Number

For Mouse Pickup method, when clicking Draw Point Number button at step 5, Coordinates on Work Plane dialog in Figure 6.22 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.23. Once finished, click Finish in Figure 6.22.

Finally, click Finish on Line Entity dialog in Figure 6.21. Then you will be back to Entity Editor dialog where you can set the other parameters for the new entity.

Figure 6.21 Line entity dialog

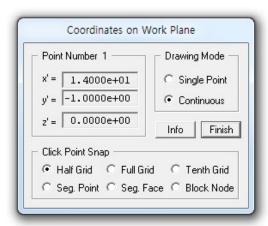


Figure 6.22 Coordinates on work plane

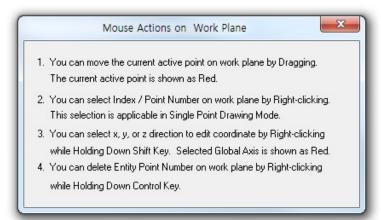
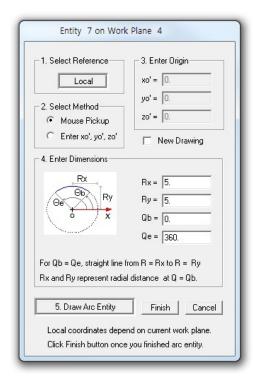


Figure 6.23 Mouse actions on work plane

6.4.9.2 Arc Entity

Arc Entity dialog is shown in Figure 6.24.


To draw Arc Entity, follow five steps:

- 1. Select Reference
- 2. Select Method
- 3. Enter Origin
- 4. Enter Dimensions
- 5. Draw Arc Entity

For Mouse Pickup method, when clicking Draw Arc Entity button at step 5, Coordinates on Work Plane dialog in Figure 6.22 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.23. Once finished, click Finish in Figure 6.22.

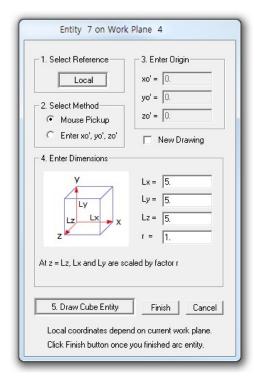
Finally, click Finish on Arc Entity dialog in Figure 6.24. Then you will be back to Entity Editor dialog where you can set the other parameters for the new entity.

Figure 6.24 Arc entity dialog

6.4.9.3 Cube Entity

Cube Entity dialog is shown in Figure 6.25.

To draw Cube Entity, follow five steps:


- 1. Select Reference
- 2. Select Method
- 3. Enter Origin
- 4. Enter Dimensions
- 5. Draw Cube Entity

For Mouse Pickup method, when clicking Draw Cube Entity button at step 5, Coordinates on Work Plane dialog in Figure 6.22 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.23. Once finished, click Finish in Figure 6.22.

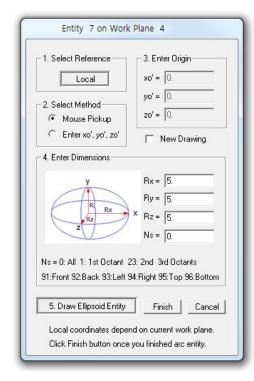
Finally, click Finish on Cube Entity dialog in Figure 6.25.

Then you will be back to Entity Editor dialog where you can set the other parameters for the new entity.

Figure 6.25 Cube entity dialog

6.4.9.4 Ellipsoid Entity

Ellipsoid Entity dialog is shown in Figure 6.26.


To draw Ellipsoid Entity, follow five steps:

- 1. Select Reference
- 2. Select Method
- 3. Enter Origin
- 4. Enter Dimensions
- 5. Draw Ellipsoid Entity

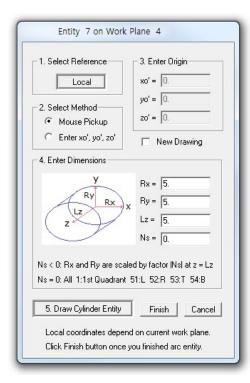
For Mouse Pickup method, when clicking Draw Ellipsoid Entity button at step 5, Coordinates on Work Plane dialog in Figure 6.22 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as in Figure 6.23. Once finished, click Finish in Figure 6.22.

Finally, click Finish on Ellipsoid
Entity dialog in Figure 6.26.
Then you will be back to Entity
Editor dialog where you can set
the other parameters for the new
entity.

Figure 6.26 Ellipsoid entity dialog

6.4.9.5 Cylinder Entity

Cylinder Entity dialog is shown in Figure 6.27.


To draw Cylinder Entity, follow five steps:

- 1. Select Reference
- 2. Select Method
- 3. Enter Origin
- 4. Enter Dimensions
- 5. Draw Cylinder Entity

For Mouse Pickup method, when clicking Draw Cylinder Entity button at step 5, Coordinates on Work Plane dialog in Figure 6.22 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as in Figure 6.23. Once finished, click Finish in Figure 6.22.

Finally, click Finish on Cylinder Entity dialog in Figure 6.27. Then you will be back to Entity Editor dialog where you can set the other parameters for the new entity.

Figure 6.27 Cylinder entity dialog

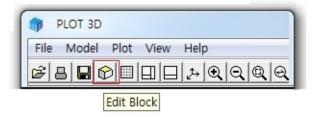
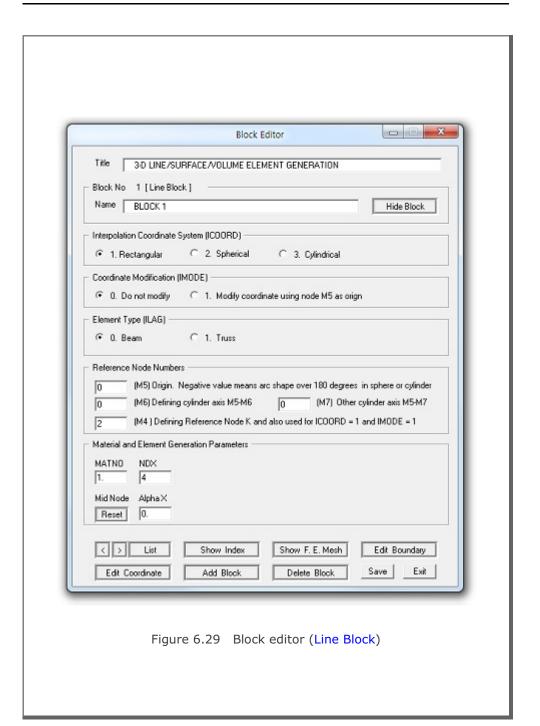
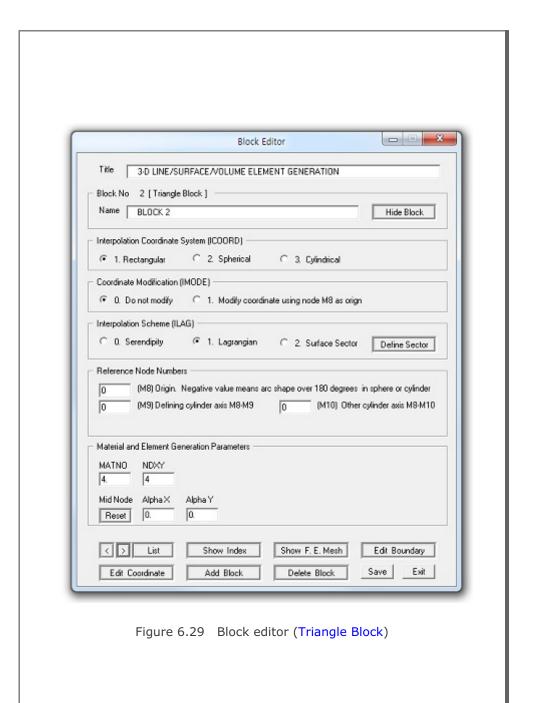
6.5 Block

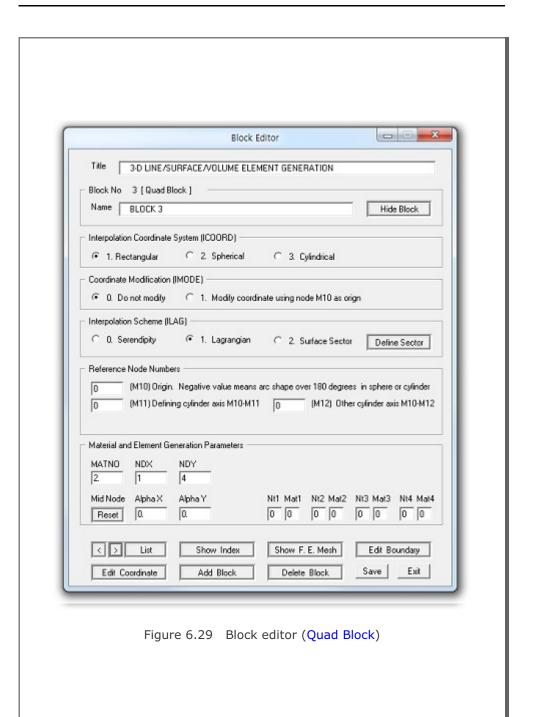
Blocks are groups of elements. Each block consist of the same type of finite elements.

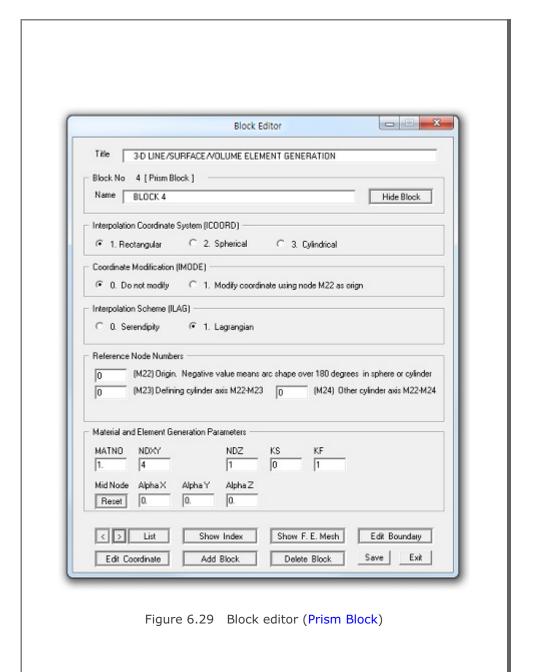
Block Editor can be accessed by selecting the following menu items in PLOT-3D:

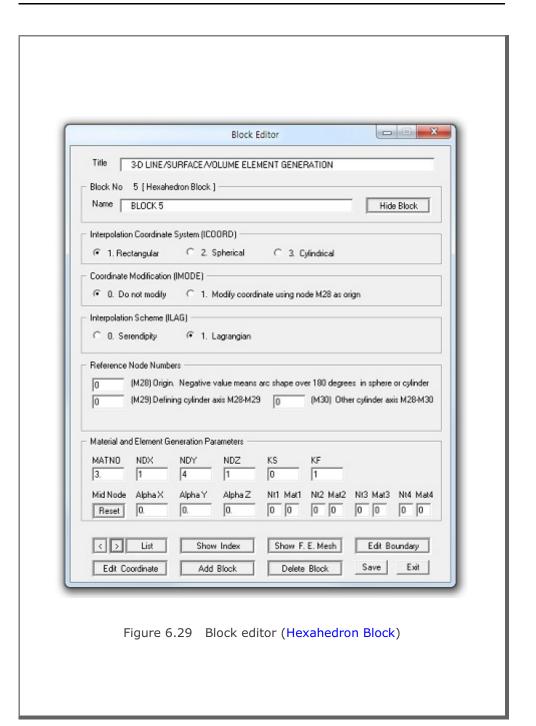
Model → Block Editor

or by clicking Block Editor toolbar as shown in Figure 6.28.


Figure 6.28 Block editor toolbar


Block Editor dialog in Figure 6.29 consists of following eight parts:


- Title
- Block Number
- Interpolation Coordinate System
- Coordinate Modification
- Interpolation Scheme / Element Type
- · Reference Node Numbers
- Material and Element Generation Parameters
- Command Buttons

6.5.1 Title

This is the title for the block mesh file.

6.5.2 Block Number

Block number and type are automatically displayed as the label of the frame. You can specify block name for identification.

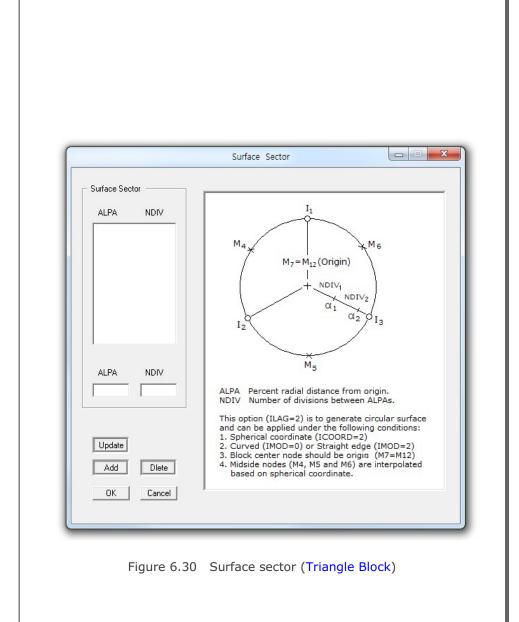
Hide Block button is to hide the current block on the screen.

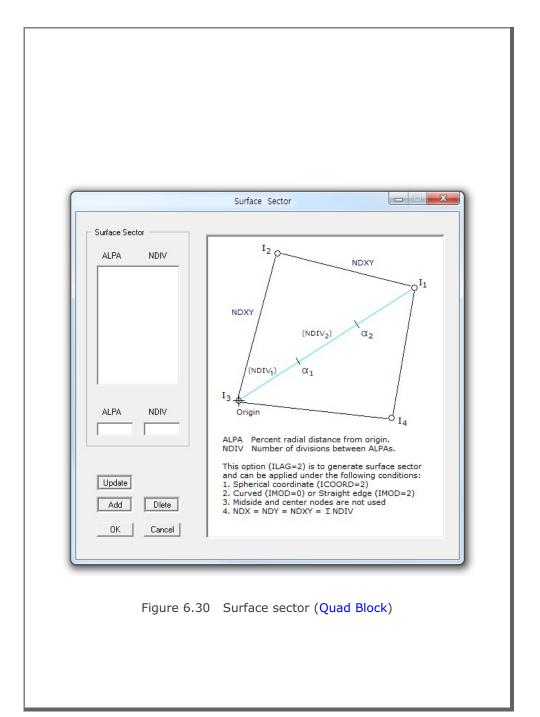
6.5.3 Interpolation Coordinate System

This is to select the coordinate system for interpolation. Three options are available: Rectangular, Spherical and Cylindrical.

6.5.4 Coordinate Modification

This is to modify generated coordinates based on the reference node as origin.


6.5.5 Interpolation Scheme / Element Type


For line blocks, two options are available for the type of line element: Beam and Truss.

For surface blocks, three options are available: Serendipity, Lagrangian and Surface Sector.

For volume blocks, two options are available: Serendipity and Lagrangian.

When you click Define Sector button, Surface Sector dialog is displayed to edit input parameters as shown in Figure 6.30.

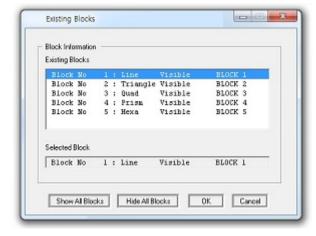
6.5.6 Reference Node Numbers

This is to specify reference node numbers which are associated with block type.

6.5.7 Material & Element Generation Parameters

This is to specify material number and element generation parameters for the block.

6.5.8 Command Buttons


Command buttons are shown on the bottom of Block Editor dialog in Figure 6.29.

List

This is used to list all available blocks in the current block mesh as shown in Figure 6.31.

When you click OK button, selected block will be displayed as the current block on the Block Editor dialog.

Figure 6.31 Block list

Show Index

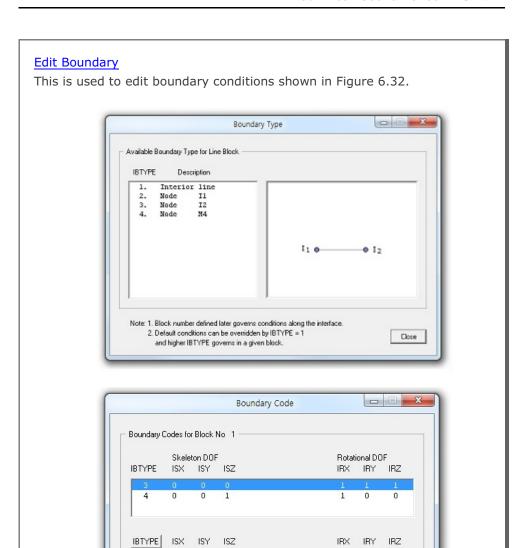
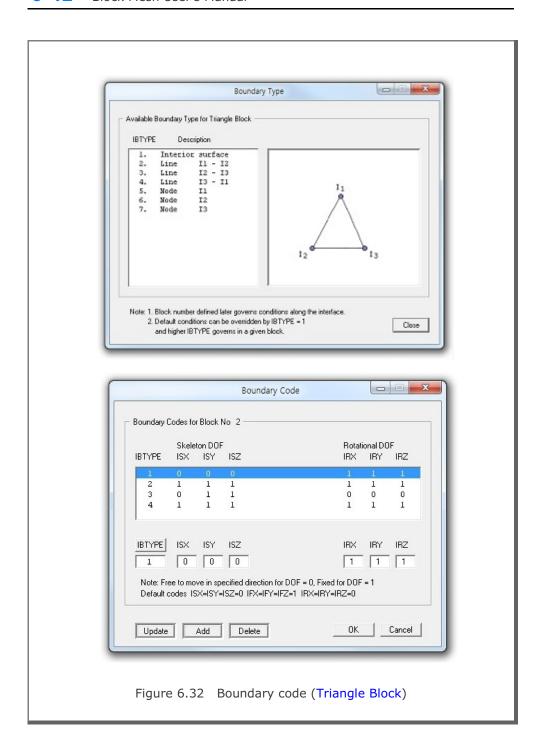
This is used to show block index numbers.

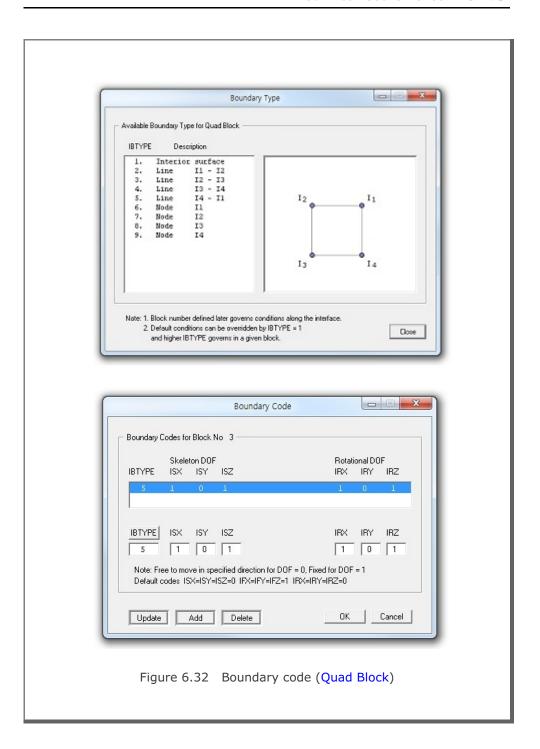
Show F. E. Mesh

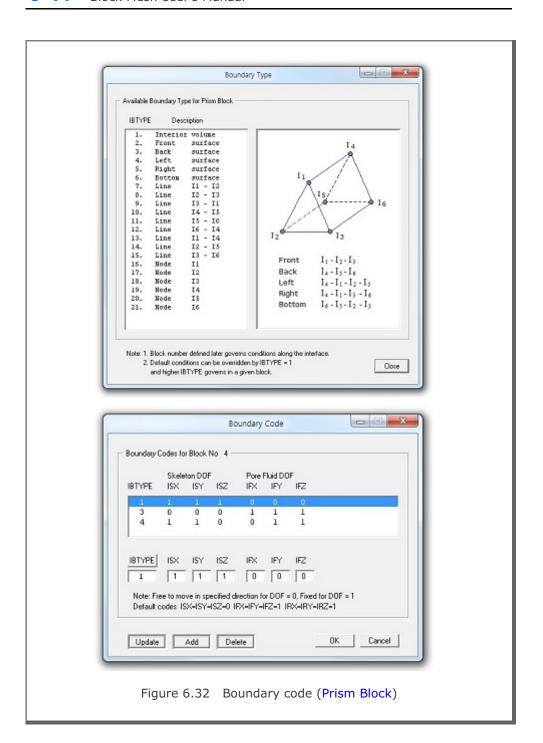
This is used to execute block mesh and then plot the generated finite element mesh.

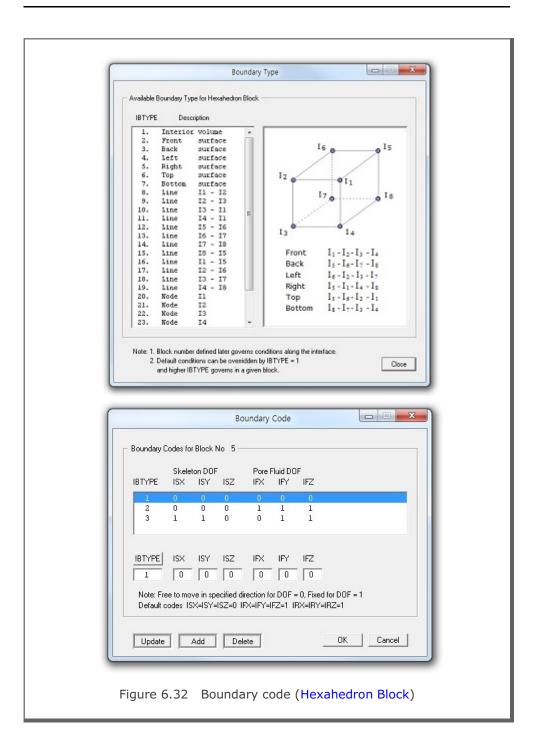
1 1 1

OK Cancel


Figure 6.32 Boundary code (Line Block)


Note: Free to move in specified direction for DOF = 0, Fixed for DOF = 1 Default codes ISX=ISY=ISZ=0 IFX=IFY=IFZ=1 IRX=IRY=IRZ=0


3 0 0 0

Update Add Delete

Edit Coordinate

This is used to edit the geometry of the block. Before editing, work plane should be displayed on the screen.

Type Block No on Edit Current Block dialog in Figure 6.33 and then click OK button.

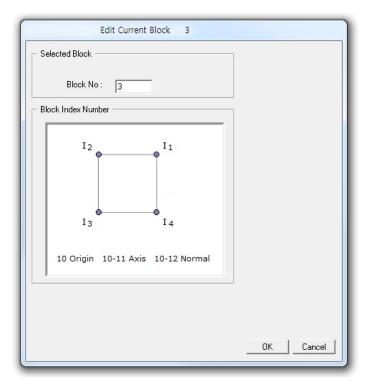
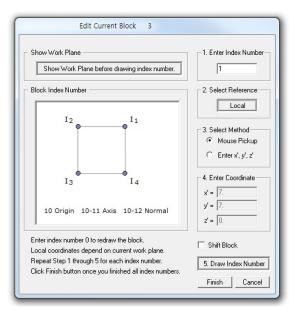


Figure 6.33 Edit current block (Selection Mode)

Edit Current Block dialog now shows input parameters required to edit the geometry of the block as shown in Figure 6.34.


To edit block, follow five steps:

- 1. Enter Index Number
- 2. Select Reference
- 3. Select Method
- 4. Enter Coordinate
- 5. Draw Index Number

For Mouse Pickup method, when clicking Draw Index Number button at step 5, Coordinates on Work Plane dialog in Figure 6.35 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.36. Once finished, click Finish in Figure 6.35.

Finally, click Finish on Edit Current Block dialog in Figure 6.34. Then you will be back to Block Editor dialog where you can set the other parameters for the current block.

Figure 6.34 Edit current block (Edit Mode)

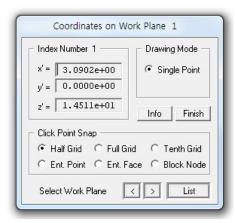


Figure 6.35 Coordinates on work plane

Figure 6.36 Mouse actions on work plane

Add Block

This is used to add the geometry of the new block. Before building, work plane should be displayed on the screen.

Build New Block dialog in Figure 6.37 will be displayed. Select Block Type, Interpolation Coordinate System and then click OK button.

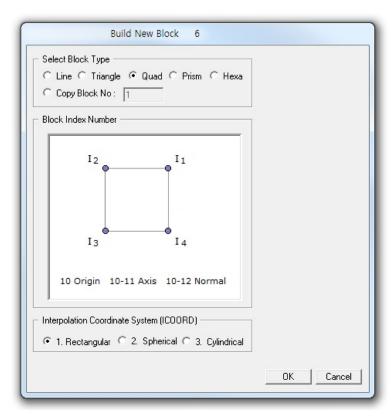
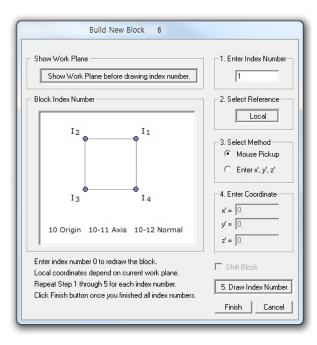


Figure 6.37 Build new block (Selection Mode)

Build New Block dialog now shows input parameters required to build the geometry of new block as shown in Figure 6.38.


To build new block, follow five steps:

- 1. Enter Index Number
- 2. Select Reference
- 3. Select Method
- 4. Enter Coordinate
- 5. Draw Index Number

For Mouse Pickup method, when clicking Draw Index Number button at step 5, Coordinates on Work Plane dialog in Figure 6.39 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.36. Once finished, click Finish in Figure 6.39.

Finally, click Finish on Build New Block dialog in Figure 6.38. Then you will be back to Block Editor dialog where you can set the other parameters for the new block.

Figure 6.38 Build new block (Build Mode)

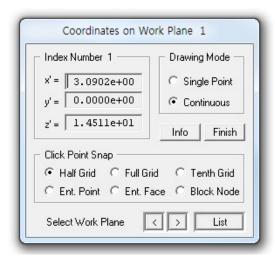


Figure 6.39 Coordinates on work plane

Delete Block

This is used to delete the current block.

This is used to save all the works you have done.

Exit

This is used to exit from the block editor.

6.5.9 Popup Menu for Block

When Block Editor dialog is opened, you can directly access a block by Shift + Right Click. Then the selected block is displayed on the Block Editor dialog along with Popup Menu as shown in Figure 6.40.

Popup Menu consists of eleven submenus:

Edit, Copy, Add, Hide, Delete, List, Index, Boundary, F.E. Mesh, Save and Exit. These menus are essentially duplicates of command buttons on the Block Editor dialog.

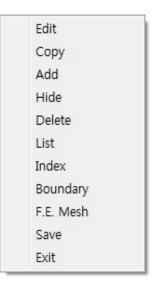


Figure 6.40 Popup menu for block

6.6 Modifying Finite Element Meshes

Block Mesh Generator can be used to directly modify finite element mesh.

When you open input file, Mesh Generator reads the format of the input file and automatically identifies whether it is block mesh file or finite element mesh file.

Editing finite element mesh has three parts: Edit Element, Edit Node and Edit Title. These editing modes can be accessed from Model menu in PLOT-3D as shown in Figure 6.41.

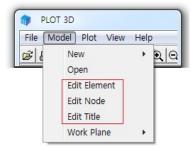


Figure 6.41 Menu for editing finite element mesh

You can check the current editing mode by moving the mouse on Editing Mode toolbar as shown in Figure 6.42.

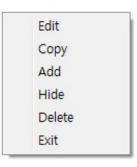



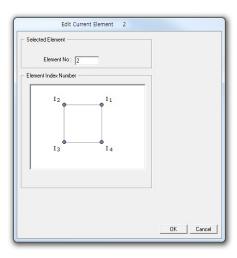
Figure 6.42 Toolbar for editing finite element mesh

6.6.1 Edit Element

When you are in Element Editing Mode, you can access popup menu for element in Figure 6.43 by Shift + Right Click.

Figure 6.43 Popup menu for element

Element popup menu consists of six submenus: Edit, Copy, Add, Hide, Delete and Exit.


Edit

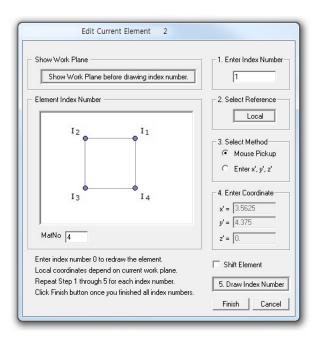
This is used to edit the geometry of element.

Before editing, work plane should be displayed on the screen.

Edit Current Element dialog is displayed in Figure 6.44. Type Element No and click OK button.

Figure 6.44 Edit current element (Selection Mode)

Edit Current Element dialog now shows input parameters required to edit the geometry of element as shown in Figure 6.45.


To edit element, follow five steps:

- 1. Enter Index Number
- 2. Select Reference
- 3. Select Method
- 4. Enter Coordinate
- 5. Draw Index Number

For Mouse Pickup method, when clicking Draw Index Number button at step 5, Coordinates on Work Plane dialog in Figure 6.46 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.47. Once finished, click Finish in Figure 6.46.

Finally, click Finish on Edit Current Element dialog in Figure 6.45.

Figure 6.45 Edit current element (Edit Mode)

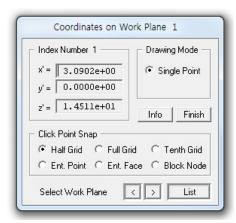


Figure 6.46 Coordinates on work plane (Edit Mode)

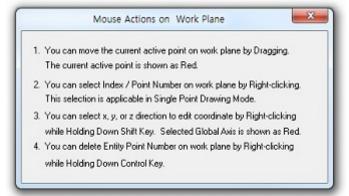


Figure 6.47 Mouse actions on work plane

Copy

This is used to copy the selected element and paste it as new element.

Edit Current Element dialog with new element number is displayed as shown in Figure 6.48. Shift Element check box should be checked to move this new element.

Follow the same procedure as in **Edit**.

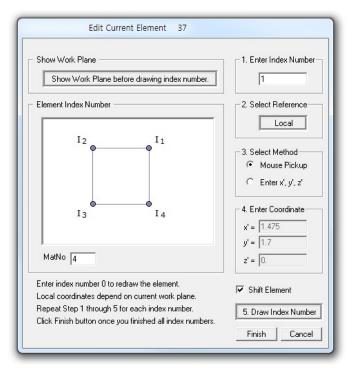


Figure 6.48 Edit current element (Copy Mode)

<u>Add</u>

This is used to add the geometry of the new element. Before building, work plane should be displayed on the screen.

Build New Element dialog in Figure 6.49 will be displayed. Select Element Type and then click OK button.

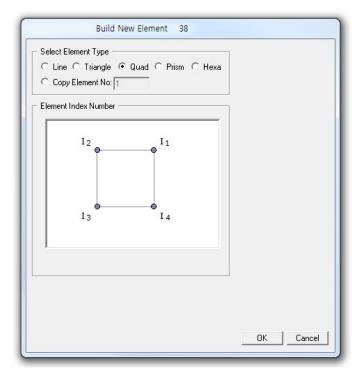
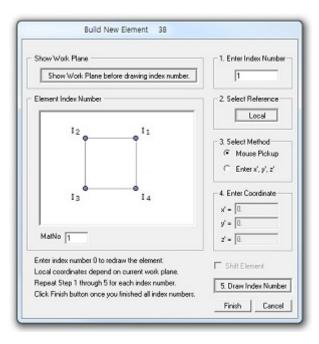


Figure 6.49 Build new element (Selection Mode)

Build New Element dialog now shows input parameters required to build the geometry of new element as shown in Figure 6.50.


To build new element, follow five steps:

- 1. Enter Index Number
- 2. Select Reference
- 3. Select Method
- 4. Enter Coordinate
- 5. Draw Index Number

For Mouse Pickup method, when clicking Draw Index Number button at step 5, Coordinates on Work Plane dialog in Figure 6.51 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.47. Once finished, click Finish in Figure 6.51.

Finally, click Finish on Build New Element dialog in Figure 6.50.

Figure 6.50 Build new element (Edit Mode)

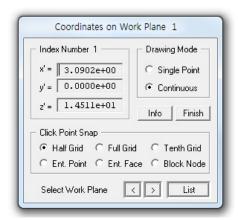


Figure 6.51 Coordinates on work plane (Add Mode)

Hide

This is used to hide the selected element from the screen. To show the hidden element, follow instructions in Figure 6.52.

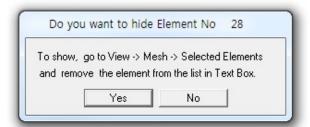


Figure 6.52 Instructions to show the hidden element

Delete

This is used to delete the selected element.

Exit

This is used to exit from the element editing mode.

6.6.2 Edit Node

When you are in Node Editing Mode, you can access popup menu for node in Figure 6.53 by Shift + Right Click.

Figure 6.53 Popup menu for node

Edit Add Delete Boundary Exit

Node popup menu consists of five submenus:

Edit, Add, Delete, Boundary and Exit.

Edit

This is used to edit the coordinates of node.

Before editing, work plane should be displayed on the screen.

Edit Current Node dialog is displayed in Figure 6.54.

To edit current node, follow five steps:

- 1. Enter Node Number
- 2. Select Reference
- 3. Select Method
- 4. Enter Coordinate
- 5. Draw Node Number

For Mouse Pickup method, when clicking Draw Node Number button at step 5, Coordinates on Work Plane dialog in Figure 6.55 will be opened. Click Info button to see the notes on Mouse Actions on Work Plane as shown in Figure 6.47. Once finished, click Finish in Figure 6.55.

Finally, click Finish on Edit Current Node dialog in Figure 6.54.

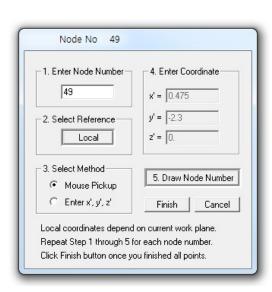


Figure 6.54 Edit current node dialog

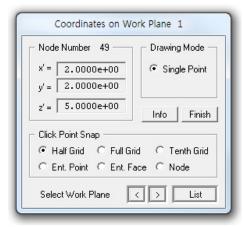


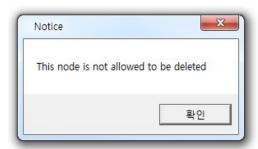
Figure 6.55 Coordinates on work plane (Edit Node)

Add

This is used to add new node.

Before adding, work plane should be displayed on the screen.

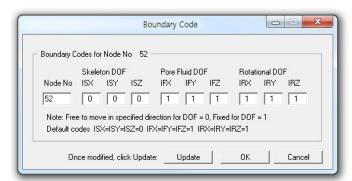
Build New Node dialog similar to Figure 6.54 is displayed.


Follow the same procedure as in Edit.

Delete

This is used to delete the selected node.

You can delete only standalone nodes which are not connected to elements. Refer to the notice in Figure 6.56.


Figure 6.56 Notice on deleting connected nodes

Boundary

This is used to edit boundary codes associated with the current selected node as shown in Figure 6.57.

Figure 6.57 Boundary editor dialog

Exit

This is used to exit from the node editing mode.

6.6.3 Edit Title

This is used to edit the title of the finite element mesh file as shown in Figure 6.58.

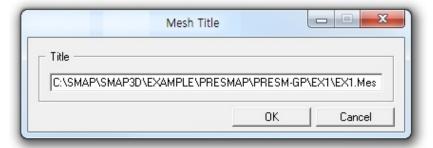


Figure 6.58 Mesh title editor dialog

PRESMAP User's Manual

7.1 Introduction

PRESMAP programs are mainly used to model the geometry of the structures to be analyzed. Mesh File described in Section 4.3 can be created using PRESMAP programs.

Seven PRESMAP programs are provided in this manual; PRESMAP-2D, NATM-2D, CIRCLE-2D, PRESMAP-3D, CROSS-3D, GEN-3D, PILE-3D, PRESMAP-GP, JOINT-3D. and INTERSECTION.

PRESMAP-2D includes Model 1, 2, 3, and 4. Model 1 is basic pre-processor which can be applied to model various types of problem geometry. Model 2 is the special pre-processor developed to model near-fields around underground openings such as tunnels, culverts, etc. Model 3 is the special pre-processor developed to model triangular and rectangular shape geometry. Model 4 is the useful pre-processor to generate layered embankments having slope.

NATM-2D is the special pre-processing program developed to generate automatically two-dimensional finite element meshes and boundary conditions for NATM (New Austrian Tunneling Method) tunnels.

CIRCLE-2D is the special pre-processing program developed to generate automatically two-dimensional finite element meshes for circular cross section with joint interface.

PRESMAP-3D is the basic pre-processor which can be applied to model various types of three dimensional geometries.

CROSS-3D is the special pre-processing program developed to generate automatically three dimensional finite element meshes and boundary conditions for crossing tunnels. The intermediate output file with file extension .TMP from CROSS-3D contains finite element block coordinates, indexes, and boundary conditions which are essentially input data to PRESMAP-3D.

GEN-3D generates coordinates, element indexes, boundary codes, external loads, and transmitting boundaries in three dimensional coordinate system by extending typical two dimensional output files from PRESMAP-2D, NATM-2D or CIRCLE-2D.

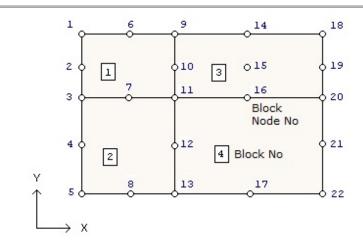
PILE-3D is the special pre-processor which can be used to generate all input files required for pile foundation analysis. It can generate Concrete Pile with Anchor Bolts or Steel Pipe with Concrete Cap.

PRESMAP-GP is the general purpose pre-processing program which can be used to generate coordinates, element indexes and boundary codes for truss, beam, shell or continuum elements. Users can select rectangular, spherical or cylindrical coordinate for interpolation.

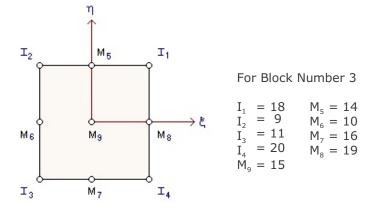
JOINT-3D is the special pre-processor which can be used to generate jointed continuum finite element meshes given the conventional continuum SMAP-3D Mesh File input. For the jointed continuum analysis, each continuum finite element is surrounded by joint elements which allow slippage along the joint when reaching shear strength and debonding normal to the joint face when exceeding tensile strength.

INTERSECTION programs are mainly used to compute the locations of the 3D surfaces crossing each other. These surfaces consist of Shell Elements with different materials. The computed coordinates of intersections can be used for the construction of complicated threedimensional meshes. Two methods are available: Shell Element and Two Tunnels.

Card Group	Input Data and Definitions (Model 1)
1	TITLE TITLE Any title of (Max = 60 characters)
	IP IP = 0 Plane strain or plane stress = 1 Axisymmetry
	NBLOCK, NBNODE, NSNEL, CMFAC (SMAP-S2/2D) NBLOCK, NBNODE, NSNEL, CMFAC, TEMPI (SMAP-T2) See Figure 7.1
General Information	NBLOCK Number of blocks NBNODE Number of block nodes NSNEL Starting element number CMFAC Coordinate magnification factor TEMPI Initial temperature

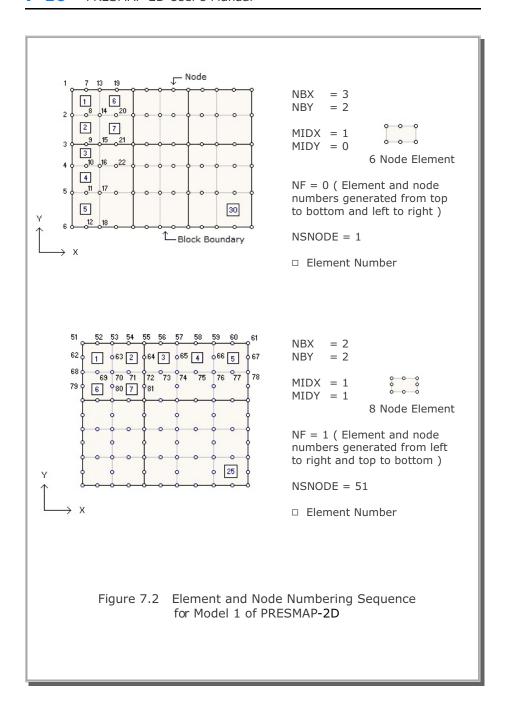

Card Group	Input Data and Definitions (Model 1)
1	NBX, NBY, MIDX, MIDY, NF, NSNODE
	See Figure 7.2
	NBX Number of blocks in x-direction NBY Number of blocks in y-direction
	MIDX = 0 Element has no side nodes in x-direction = 1 Element has side nodes in x-direction
	MIDY = 0 Element has no side nodes in y-direction = 1 Element has side nodes in y-direction
General Information	NF = 0 Element and node numbering sequence from top to bottom and left to right. = 1 Element and node numbering sequence from left to right and top to bottom.
General	NSNODE Starting node number

Card Group		Input Data and Definitions (Model 1)	
2	NBNODE Cards	NODE ₁ , X ₁ , Y ₁ NODE ₂ , X ₂ , Y ₂	
	NODE X Y	Node number X-coordinate Y-coordinate	
Block Coordinate			


Card Group	Input Data and Definitions (Model 1)
3	BLNAME BLNAME Block name (up to 60 characters)
	IBLNO Block number
	I ₁ , I ₂ , I ₃ , I ₄ , M ₅ , M ₆ , M ₇ , M ₈ , M ₉
	See Figure 7.1
Data for Each Block	I ₁ , I ₂ , I ₃ , I ₄ Corner node number M ₅ , M ₆ , M ₇ , M ₈ Side node number M ₉ Center node number
Data	IBASE, IB ₁ , IB ₂ , IB ₃ , IB ₄ , IB ₅ , IB ₆ , IB ₇ , IB ₈ (SMAP-2D) IB ₁ , IB ₂ , IB ₃ , IB ₄ , IB ₅ , IB ₆ , IB ₇ , IB ₈ (SMAP-S2)
	See Figure 7.3
	IBASE Base boundary code IB_1 , IB_2 , IB_3 , IB_4 Corner boundary code IB_5 , IB_6 , IB_7 , IB_8 Edge boundary code

Card Group	Input Data and Definitions (Model 1)
Data for Each Block	MATNO, NDX, NDY, KS, KF (SMAP-2D) MATNO, NDX, NDY, THICK, DENSITY (SMAP-S2) MATNO, NDX, NDY, IDH (SMAP-T2) MATNO Material property number If MATNO = 0, the block is void. NDX Number of elements in x-direction NDY Number of elements in y-direction KS = 0 Has solid phase = 1 No solid phase KF = 0 Has fluid phase = 1 No fluid phase THICK Thickness of element. For plane strain, use THICK=1.0 DENSITY Unit weight of element IDH Heat generation history ID number

Card Group		Input	Data and Definitions (Model 1)
3	3.6 NF :		er of block sides where boundary are specified
Data for Each Block	Force Data for Each Specified Side (see Figure 7.4)	3.7.1 IEDGE, LHNO, IEDGE LHNO IBF = 0 = 1 = 2 = 3 = 4 3.7.2 IBF = 1 > = 2 > = 3 > = 4 > IDIR = 1 = 2 q _{n1} , q _{n2} q _{h1} , q _{h2} q _{v1} , q _{v2}	Edge designation number Load history number No applied force Static fluid pressure Horizontal force Vertical force Horizontal and vertical force IDIR _n , q _{n1} , q _{n2} IDIR _h , q _{h1} , q _{h2} IDIR _v , q _{v1} , q _{v2} IDIR _h , q _{h1} , q _{h2} IDIR _h , q _{h1} , q _{h2} IDIR _v , q _{v1} , q _{v2}



NBLOCK = 4, NBNODE = 22Block number should be in order from top to bottom and left to right

PRESMAP uses Serendipity interpolation if $M_{9}=0$ and Lagrangion interpolation if $M_{9}\neq0$

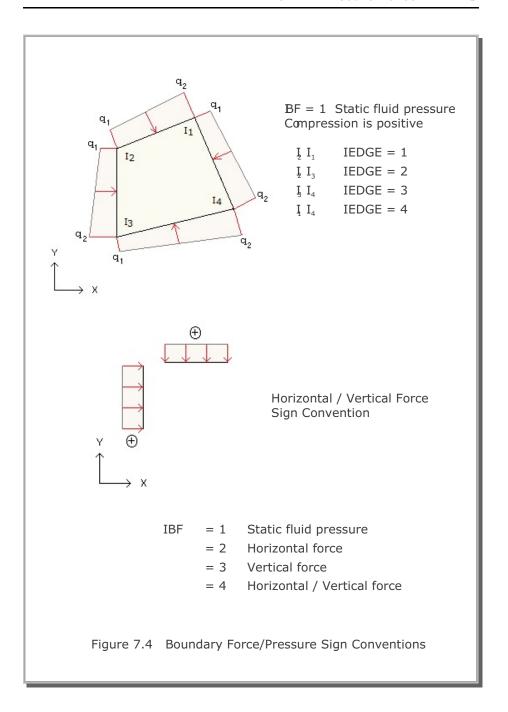
Figure 7.1 Block Specification and Block Index

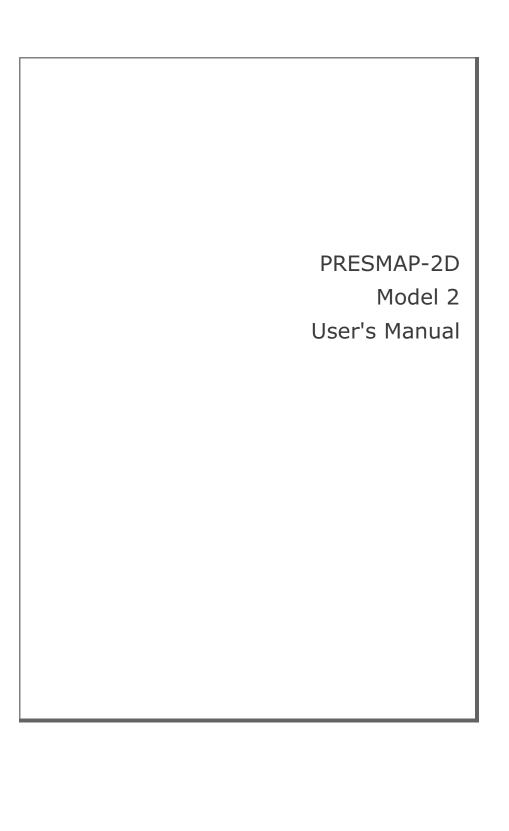
Boundary Codes				
IBASE or IB	ISX	ISY	IFX	IFY
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1

Specifies skeleton X(radial) degree of freedom ISX ISY Specifies skeleton Y(axial) degree of freedom IFX Specifies X(radial) degree of freedom for relative pore fluid motion. IFY Specifies Y(axial) degree of freedom for relative pore fluid motion.

ISX, ISY, IFX, IFY = 0Free to move in specified direction Fixed in specified direction

Figure 7.3a Boundary Codes for SMAP-2D


IDX = 0


Boundary Type	Boundary Codes		
IB	IDX	IDY	IDT
0	0	0	1
1	1	0	1
2	0	1	1
3	1	1	1
4	0	0	0
5	1	0	0
6	0	1	0
7	1	1	0

= 1 Displacement in x-direction is fixed
 IDY = 0 Displacement in y-direction is free
 = 1 Displacement in y-direction is fixed
 IDT = 0 Rotational degree of freedom is free
 = 1 Rotational degree of freedom is fixed

Displacement in x-direction is free

Figure 7.3b Boundary Codes for SMAP-S2

Card	Input Data and Definitions (Model 2)
Group	, ,
1	TITLE TITLE Any title (Max = 60 characters)
	IP IP = 0 Plane strain or plane stress = 1 Axisymmetry
	NSNEL, NSNODE, NF, CMFAC (SMAP-S2/2D) NSNEL, NSNODE, NF, CMFAC, TEMPI (SMAP-T2)
ırmation	NSNEL Starting element number NSNODE Starting node number
General Information	NF = 0 Element and node numbering sequence from top to bottom and left to right = 1 Element and node numbering sequence from
	left to right and top to bottom CMFAC Coordinate magnification factor TEMPI Initial temperature
	NSUBR, NDRF, NDRS, NDRT, DRF, DRS See Figure 7.5
	NSUBR Number of subregions NDRF Number of divisions in the first row block NDRS Number of divisions in the second row block NDRT Number of divisions in the third row block DRF Length of the first row block DRS Length of the second row block

Card Group	Input Data and Definitions (Model 2)					
2	SUBNAME					
	SUBNAME Subregion name (up to 60 characters)					
	ISUBNO					
	ISUBNO Subregion number					
Ē	ISBTYPE, LSFTYPE, NSEG					
Data for Each Subregion	See Figure 7.6 and 7.7					
	ISBTYPE = 0 Column grids are normal to subregion surface = 1 Column grids are straight line					
	LSFTYPE = 0 Straight line subregion surface = 1 Circular subregion surface					
	NSEG Number of segments along subregion surface					

Card Group	Input Data and Definitions (Model 2)			
2	2.4		2.4.1 X _A , Y _A , X _B , Y _B	
)	For LSFTYPE= 0	X _A , Y _A X and Y coordinate of point A X _B , Y _B X and Y coordinate of point B	
Data for Each Subregion	Subregion Surface (Figure 7.6 and 7.7)	For LSFTYPE1=1	R, X_{o} , Y_{o} , θ_{a} , θ_{B} R Radius of arc AB X_{o} , Y_{o} X and Y coordinate of circle origin θ_{A} , θ_{B} Polar angle (degree) of point A and B	

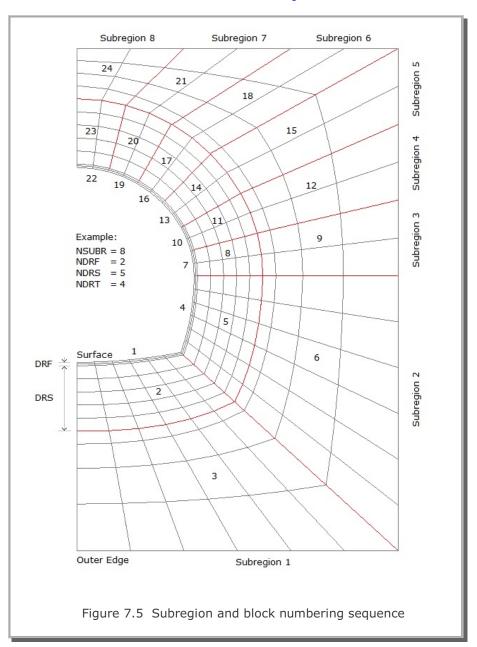
Card Group	Input Data and Definitions (Model 2)				
Data for Each Subregion	Subregion Outer Edge		Point C	2.5.1.1 LCTYPE LCTYPE	= 0 X _c and Y _c are specified = 1 X _c is specified = 2 Y _c is specified = 3 DRT _c is specified
				2.5.1.2 If LCTYPE	= 0> X _c , Y _c = 1> X _c = 2> Y _c = 3> DRT _c
				X _c , Y _c DRT _c	X and Y coordinate of point C Length of third row block along the edge AC
			Point D		= 0 X _D and Y _D are specified = 1 X _D is specified = 2 Y _D is specified = 3 DRT _D is specified
					= 0> X _D , Y _D = 1> X _D = 2> Y _D = 3> DRT _D
				X _D ,Y _D DRT _D	X and Y coordinate of point D Length of third row block along the edge BD.

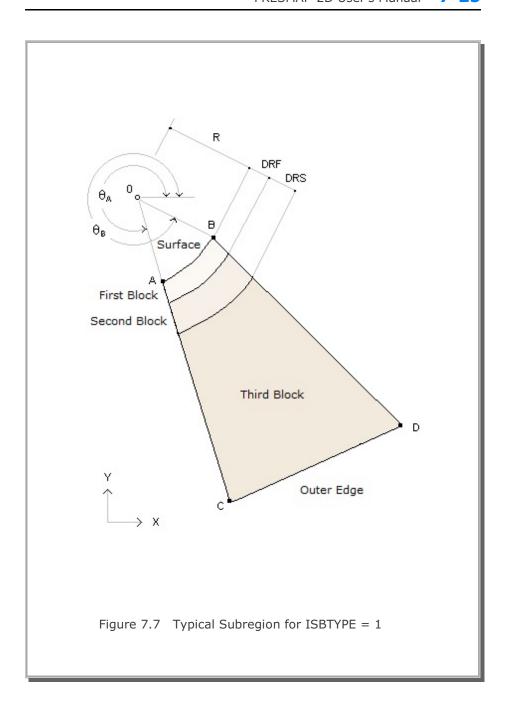
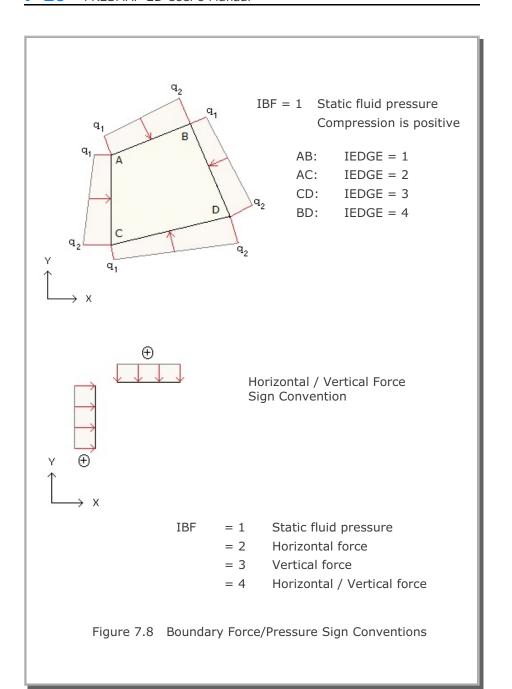
Subregion Outer Edge Subregion Outer Edge Ac, Ac, Ac, Xo, Yo, Yo, Yo, Yo, Yo, Yo, Yo, Yo, Yo, Y

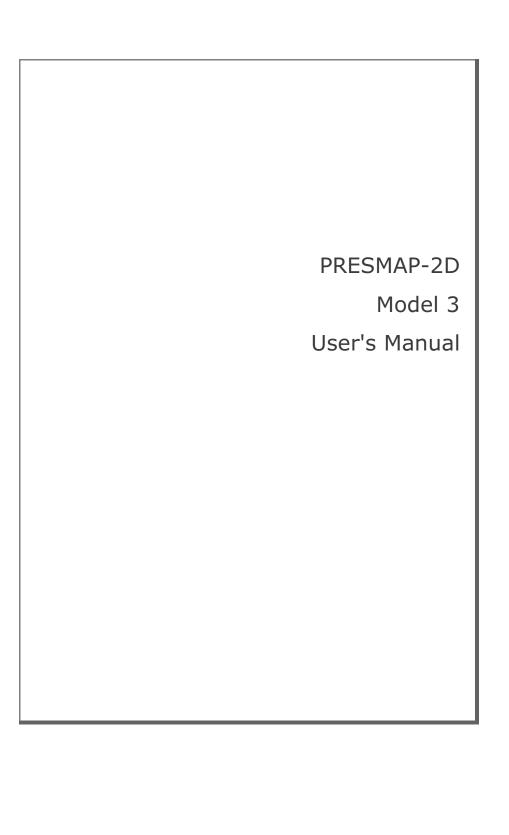
Card	Input Data and Definitions (Model 2)						
	2.1900 2.000 0.100 0.100 (1.1000. 2)						
Card Group Data for Each Subregion	Input Data and Definitions (Model 2) 2.6 IBASE ₁ , IBASE ₂ , IBASE ₃ (SMAP-2D) IB _B , IB _A , IB _C , IB _D , IB _{AB} , IB _{AC} , IB _{CD} , IB _{BD} (SMAP-2D/S2) See Figure 7.3 in Model 1 IBASE ₁ , IBASE ₂ , IBASE ₃ First, second, and third block base boundary code IB _B , IB _A , IB _C , IB _D Corner boundary code IB _{AB} , IB _{AC} , IB _{CD} , IB _{BD} Edge boundary code 2.7 1st Block: MATNO ₁ , KS ₁ , KF ₁ (SMAP-2D) MATNO ₁ , DENSITY ₁ (SMAP-S2) MATNO ₁ , IDH ₁ (SMAP-T2) 2 nd Block: - 3 rd Block: - MATNO ₁ Material property number of first block KS ₁ , KF ₁ Solid and fluid phase flag of first block DENSITY ₁ Unit weight of first block						
	IDH ₁ Heat generation history ID of first block Note: For KS and KF, refer to Card Group 3.5 in PRESMAP-2D Model 1 User's Manual						

Card Group	Input Data and Definitions (Model 2)				
2	2.8 NFS	NFSIDE Number of edge where boundary forces are specified			
Data for Each Subregion	Force Data for Each Specified Edge (see Figure 7.8)	IBF = 0 No = 1 Sta = 2 Ho = 3 Ve = 4 Ho 2.9.2 IBF = 1> III = 2> III = 4> III IDIR = 1 F = 2 F q _{n1} , q _{n2} Sq _{h1} , q _{h2}	ge designation number ad history number applied force atic fluid pressure rizontal force rtical force rizontal and vertical force DIR _n , q _{n1} , q _{n2} DIR _h , q _{h1} , q _{h2} DIR _v , q _{v1} , q _{v2}		

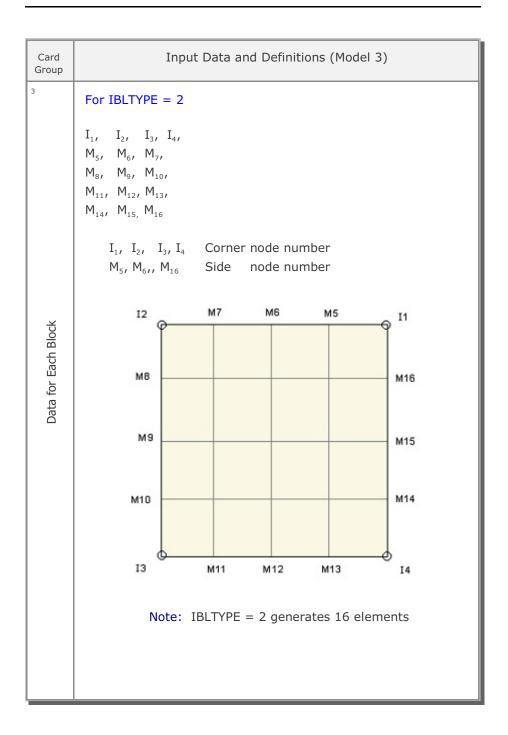
Block numbers are in order from surface to outer edge and counterclockwise



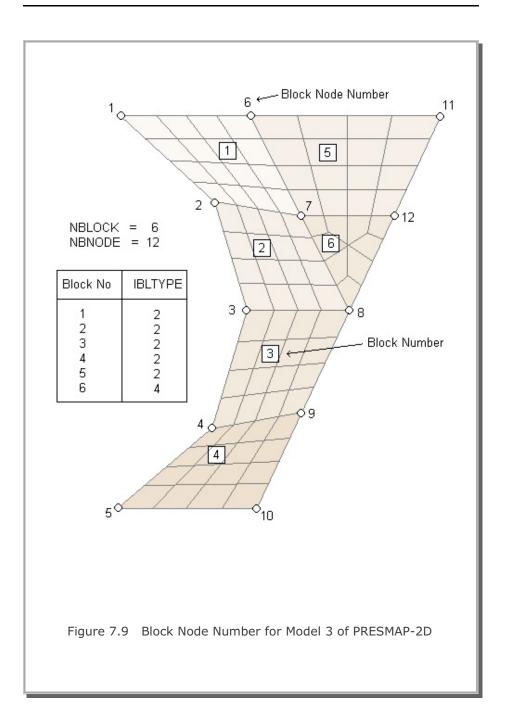



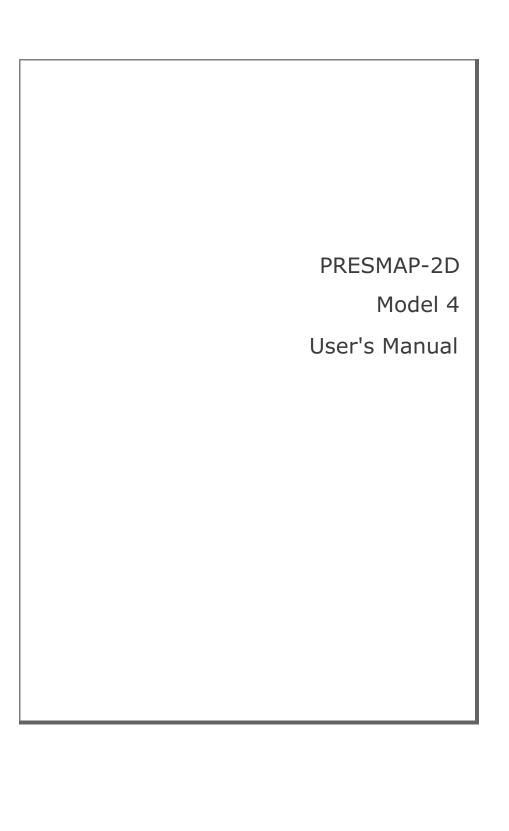

Table 7.1 Subregion parameters in Example Figure 7.5

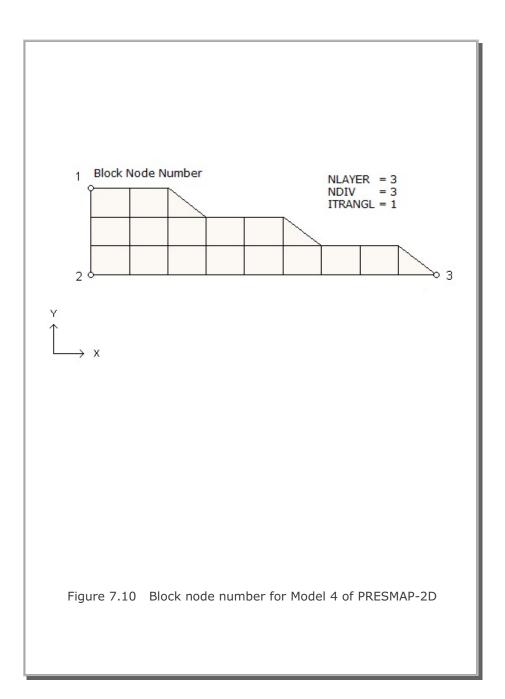
Subregion	ISBTYPE	LSFTYPE	NSEG
1	1	1	6
2	1	1	6
3	0	1	2
4	0	1	2
5	0	1	2
6	0	1	2
7	0	1	2
8	0	1	2

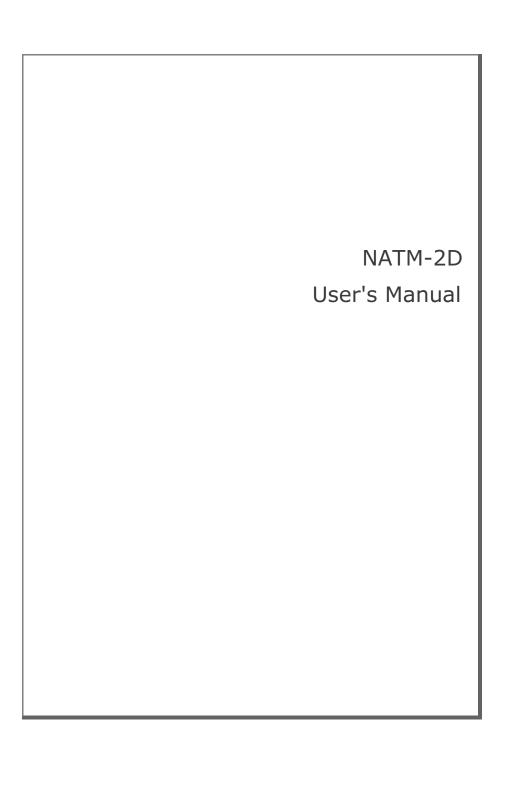


Card Group	Input Data and Definitions (Model 3)			
General Information	TITLE TITLE Any title (Max = 60 characters)			
	IP IP = 0 Plane geometry = 1 Axisymmetry geometry			
General I	NBLOCK, NBNODE, NSNEL, NSNODE, CMFAC			
	See Figure 7.9			
	NBLOCK Number of blocks NBNODE Number of block nodes NSNEL Starting element number NSNODE Starting node number CMFAC Coordinate magnification factor			
Block Coordinates	NBNODE NODE ₁ , X ₁ , Y ₁ NBNODE NODE ₂ , X ₂ , Y ₂ Cards L NODE Node number X			


3.1 IBLNO, IBLTYPE, MATNO, KS, KF (SMAP-2D) IBLNO, IBLTYPE, MATNO, DENSITY (SMAP-S2) IBLNO, IBLTYPE, MATNO, IDH (SMAP-T2) IBLNO Block number IBLTYPE Block type MATNO Material number KS = 0 Has solid phase = 1 No solid phase (6: KF = 0 Has fluid phase = 1 No fluid phase
KF = 0 Has fluid phase = 1 No fluid phase


Card Group	Input Data and Definitions (Model 3)
3	For IBLTYPE = 1 I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_8 , I_8 , I_8 , I_8 , I_8 , I_9
Data for Each Block	12 M5 I1 M8
Data fo	Note: IBLTYPE = 1 generates 4 elements
	Note. IBLITPE = 1 generates 4 elements


Card Group	Input Data and Definitions (Model 3)
3	For IBLTYPE = 3
	I ₁ , I ₂ , I ₃ , M ₄ , M ₅ , M ₆
	I_1 , I_2 , I_3 Corner node number M_4 , M_5 , M_6 Side node number
Data for Each Block	Note: IBLTYPE = 3 generates 3 elements


Card Group	Input Data and Definitions (Model 3)
3	For IBLTYPE = 4 I_1 , I_2 , I_3 , M_4 M_5 , M_6 , M_7 , M_8 , M_9 , M_{10} M_{11} , M_{12} I_1 , I_2 , I_3 Corner node number M_4 - M_{12} Side node number
Data for Each Block	Note: IBLTYPE = 4 generates 9 elements
	-

Card Group	Input Data and Definitions (Model 4)
1	TITLE TITLE Any title (Max = 60 characters)
General Information	NLAYER, NDIV, ITRANGL
	NLAYER Number of layer NDIV Number of elements in first layer ITRANGL = 0 Last element in each layer is rectangle = 1 Last element in each layer is triangle
	NSNEL, NSNODE, CMFAC NSNEL Starting element number NSNODE Starting node number CMFAC Coordinate magnification factor
2	XB1, YB1, YB2, XB3
Block Coordinates	XB1, YB1 X, Y coordinate of block node 1 YB2 Y coordinate of block node 2 XB3 X coordinate of block node 3

Card Group	Inpı	ut Data and Definitions
1	1.2 IUNIT	(Max = 60 characters) orce Pressure Unit Weight
		b lb/in² lb/in³ con ton/m² ton/m³
General Information	MODEL = 1 Si = 2 Si = 3 Tv = 4 Tv IGEN = 0 G = 1 G = 2 G IEXMESH = 0 N = 1 Ac ILNCOUPL= 0 Si = 1 Si	enerate whole mesh enerate core enerate surrounding o user supplied mesh dd generated mesh to user supplied mesh or Lining analysis urrounding rock by continuum element urrounding rock by spring element
	= 1 G	enerate Mesh file enerate Mesh, Main and Post files vailable only for SMAP-S2
	See Figure 7.11	

Card Group	Input Data and Definitions			
2	MODEL = 1: HT, HL, W, DX, DY, NY = 2: HT, HL, W, DX, DY, NY = 3: HT, HL, W, WP, DX, DY, NY = 4: HT, HL, W, WP, HP, DX, DY, NY HT Tunnel depth HL Depth from springline to bottom boundary W Horizontal distance from left to right boundary WP Horizontal distance from left tunnel center line to			
Tunnel Analysis Boundary	right tunnel center line HP Vertical distance from right tunnel springline to left tunnel springline. When HP is positive, left tunnel springline is above the right tunnel springline. DX Far-field horizontal element length DY Far-field vertical element length NY Maximum number of elements in the vertical direction			
L	See Figure 7.11			

Card		Input Data and Definitions
Group 3	3.2 _F LAYI	Total number of layers. Max = 10 ERNO ₁ , H ₁ , DD ₁ ERNO ₂ , H ₂ , DD ₂ Soil/rock layer number Thickness of soil/rock layer
Soil / Rock Layer Information	= IDH	SMAP-T2 SMAP-2D Unit weight Heat generation history ID number Has fluid phase

Card Group	Input Data and Definitions
DEL = 4)	4.1 R ₁ , A ₁ , R ₂ , A ₂ , R ₃ , A ₃ , R ₄ , GR, GA R ₁ , R ₂ , R ₃ , R ₄ Radius as shown in Figure 7.12 A ₁ , A ₂ , A ₃ Angle (°) as shown in Figure 7.12 GR Growing rate for near-field element. Use GR = 1 GA Normalized mid length. Use GA = 0.5
Tunnel Dimension (Repeat this card group for the left tunnel when MODEL = 4)	GA Normalized mid length. Use GA= 0.5 4.2 INVSHOT, T _s , T _l INVSHOT = 0 No shotcrete at invert = 1 Shotcrete at invert T _s Thickness of shotcrete T _l Thickness of lining Note: For A ₁ +A ₂ > 90, invert shotcrtete is always included 4.3 NUMRB, L _{RB} , L _{SPACING} , T _{SPACING} , NSRB NUMRB Number of rock bolts Example: NUMRB = 11 in Figure 7.12 L _{RB} Length of rock bolt L _{SPACING} Rock bolt spacing in longitudinal direction T _{SPACING} Rock bolt spacing in tangential direction NSRB Number of elements between rock bolts Use NSRB = 2 or 3

Card Group Input Data and Definitions
LDTYPE, DGW, GAMAW, HPRES, VPRES, SUBGK, ITSPR, NUMS] LDTYPE = 0

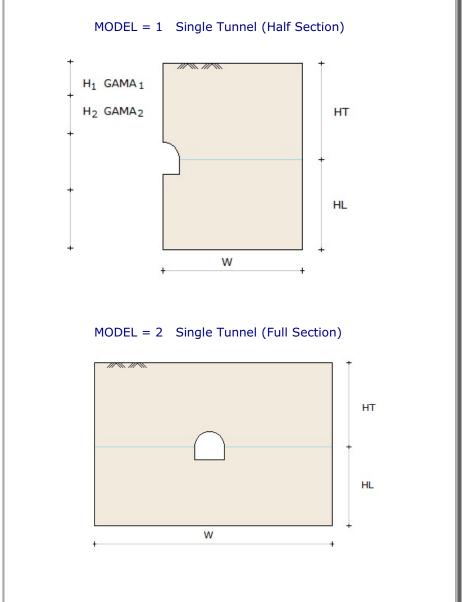
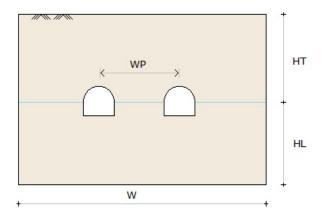
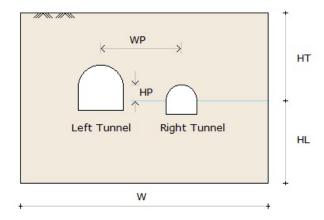
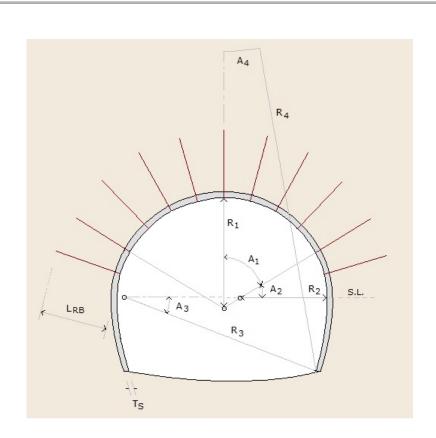
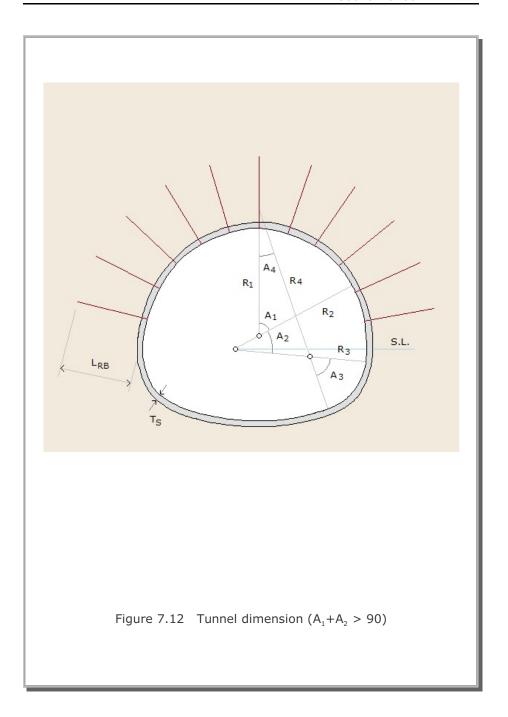



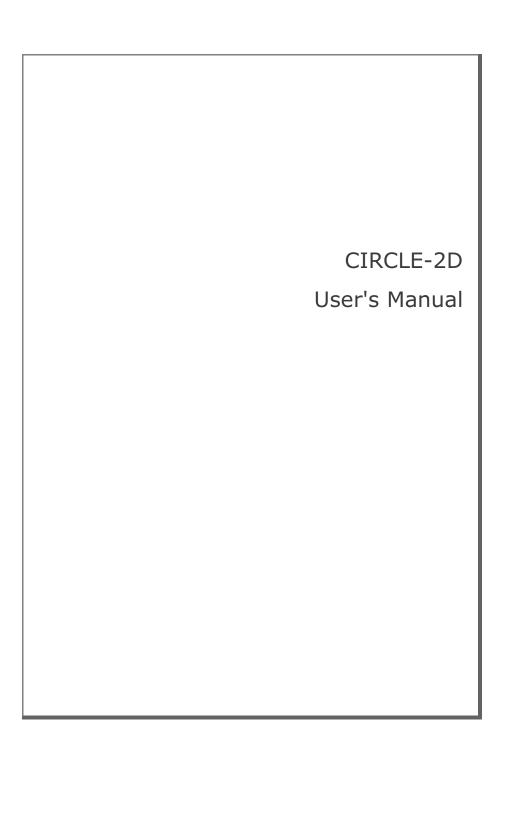
Figure 7.11 Schematic tunnel section view for MODEL = 1 and 2

MODEL = 3 Two Tunnel (Symmetric Section)

MODEL = 4 Two Tunnel (Unsymmetric Section)

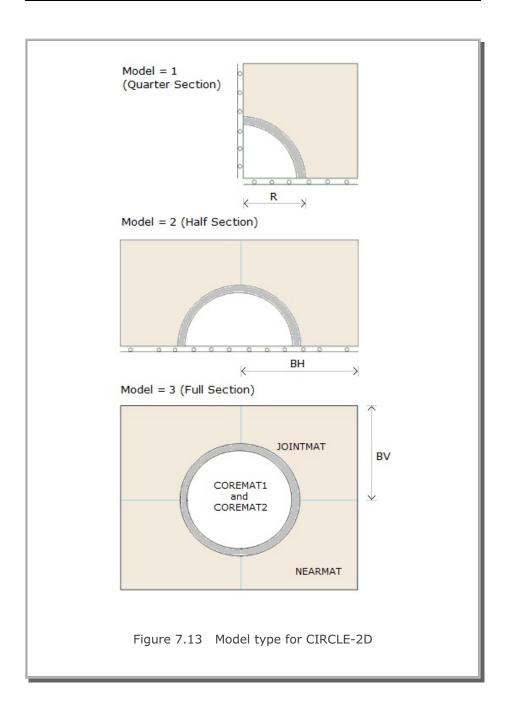



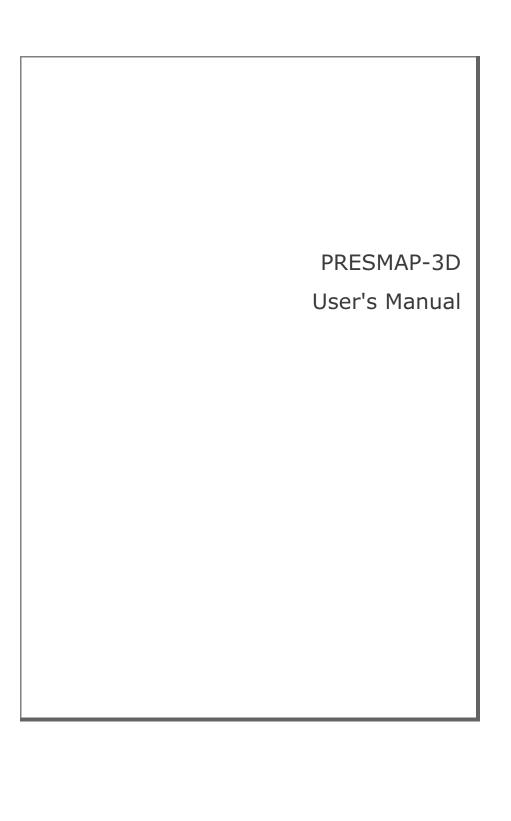

Figure 7.11 Schematic tunnel section view for MODEL = 3 and 4



 $R_{_{4}}=0$: Invert is flat $R_{_{4}}<0$: Invert depth is given as absolute value of $R_{_{4}}$

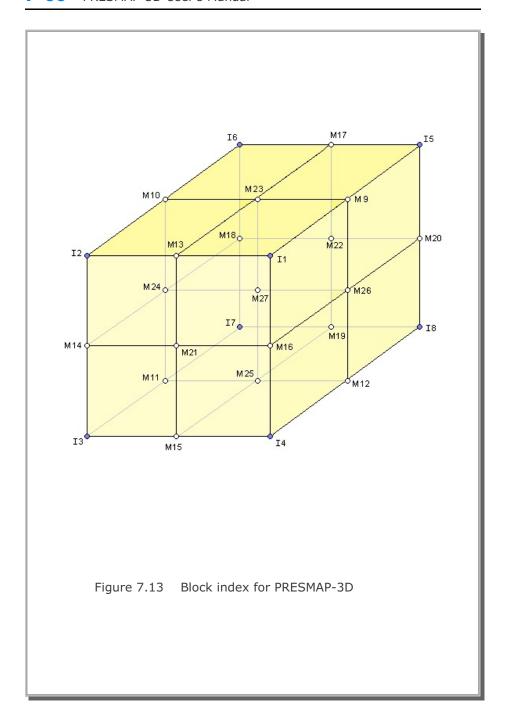
Refer to Example problem MODEL 4-1 and 4-3

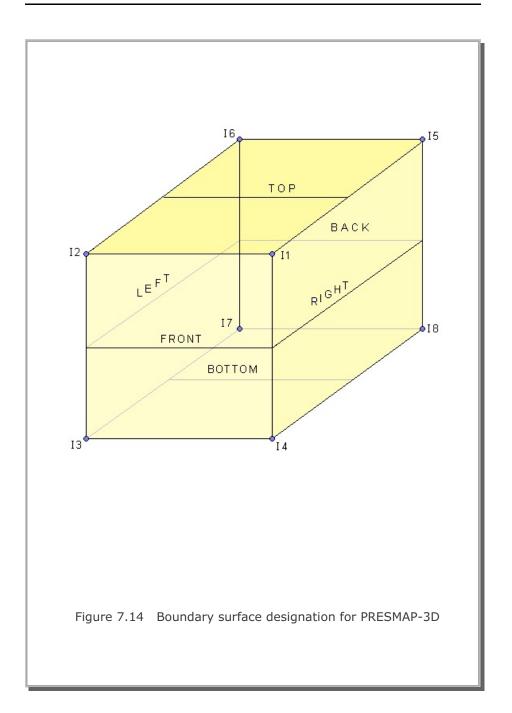

Figure 7.12 Tunnel dimension $(A_1+A_2 = 90)$

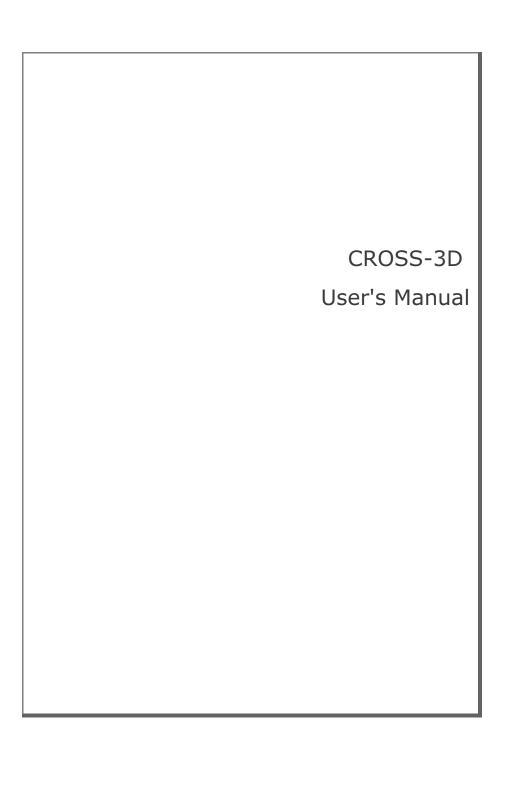


Card Group	Input Data and Definitions
1	TITLE TITLE Any title (Max = 80 characters)
ion	MODEL, NSNEL, NSNODE
General Information	MODEL = 1 Quarter Section = 2 Half Section = 3 Full Section
Gen	NSNEL Starting element number NSNODE Starting node number
	See Figure 7.13
2	R, FINEMESH, NEARMESH, NDIV, BH, BV
	R Radius of Circular Core
	FINEMESH = 0 Coarse Mesh = 1 Fine Mesh
Geometry	NEARMESH = 0 All Quad Mesh = 1 Quad and Triangle Mesh
Ge	NDIV Number of divisions for outer zone BH, BV Horizontal and Vertical dimensions

Card	Input Data and Definitions
Material Number	COREMAT ₁ , COREMAT ₂ , COREMAT ₂ , JOINTMAT, NEARMAT COREMAT ₁ Material No for Core 1 COREMAT ₂ Material No for Core 2 COREMAT ₂ Material No for Core 2 facing Joint JOINTMAT Material No for Joint NEARMAT Material No for Near Note COREMAT ₁ and COREMAT ₂ have the common interface with NEARMAT and JOINTMAT, respectively. When material number for COREMAT ₁ or JOINTMAT is zero, meshes corresponding to that material will not be generated.


Card Group	Input Data and Definitions
1	TITLE TITLE Any title (Max = 80 characters)
General Information	NBLOCK, NBNODE, NSNODE, NSNEL, CMFAC NBLOCK Number of blocks NBNODE Number of block nodes NSNODE Starting node number NSNEL Starting element number CMFAC Coordinate magnification factor Note: If NBLOCK is negative value, the output file contains plotting information for block diagram.
Block Coordinates	$ \begin{array}{c} \text{NBNODE} \\ \text{Cards} \end{array} \left[\begin{array}{ccccc} \text{NODE}_1, & X_1, & Y_1, & Z_1 \\ \text{NODE}_2, & X_2, & Y_2, & Z_2 \\ - & - & - & - \\ - & - & - & - \end{array} \right. $ $ \begin{array}{cccccc} \text{NODE} & \text{Node number} \\ \text{X} & \text{X-coordinate} \\ \text{Y} & \text{Y-coordinate} \\ \text{Z} & \text{Z-coordinate} \end{array} \right. $


Card Group	Input Data and Definitions
	Input Data and Definitions 3.1 BLNAME BLNAME Block name (Max = 60 characters) 3.2 ILAG ILAG = 0 Serendipity interpolation = 1 Lagrangian interpolation = 1 Lagrangian interpolation 3.3 I ₁ , I ₂ , I ₃ , I ₄ , I ₅ , I ₆ , I ₇ , I ₈ M ₉ , M ₁₀ , M ₁₁ , M ₁₂ , M ₁₃ , M ₁₄ , M ₁₅ , M ₁₆ , M ₁₇ , M ₁₈ , M ₁₉ , M ₂₀ M ₂₁ , M ₂₂ , M ₂₃ , M ₂₄ , M ₂₅ , M ₂₆ , M ₂₇ (only for ILAG=1)
Data for	See Figure 7.13 I ₁ - I ₈ Corner node number of a block M ₉ - M ₂₀ Side node number of a block M ₂₁ - M ₂₇ Side node number of a block required for Lagrangian interpolation.


3 3.4 3.4.1 NBOUND NBOUND Number of boundaries to be specified. If NBOUND=0, go to Card group 3.5	Card Group	Input Data and Definitions
NBOUND Cards For SMAP-3D IBTYPE, ISX, ISY, ISZ, IFX, IFY, IFZ For SMAP-T3 IBTYPE, ID, IDF IBTYPE, ID, IDF IBTYPE = 1 Interior volume = 2 Front surface = 3 Back surface = 4 Left surface = 5 Right surface = 6 Top surface = 7 Bottom surface = 7 Bottom surface = 8 Line I ₁ and I ₂ = 9 Line I ₂ and I ₃ = 10 Line I ₃ and I ₄ = 11 Line I ₄ and I ₇ = 14 Line I ₇ and I ₈ = 15 Line I ₈ and I ₅ = 16 Line I ₁ and I ₅ = 17 Line I ₂ and I ₆ = 18 Line I ₃ and I ₇ = 19 Line I ₄ and I ₈	3	NBOUND NBOUND NBOUND NBOUND NBOUND=0, go to Card group 3.5 3.4.2 NBOUND Cards For SMAP-3D IBTYPE, ISX, ISY, ISZ, IFX, IFY, IFZ For SMAP-T3 IBTYPE, ID, IDF IBTYPE = 1

Card Group		Input Data and Definitions
3		3.4.2
Data for Each Block	See Figure 7.14	= 20 Node I ₁ = 21 Node I ₂ = 22 Node I ₃ = 23 Node I ₄ = 24 Node I ₅ = 25 Node I ₆ = 26 Node I ₇ = 27 Node I ₈ ISX Skeleton X DOF ISY Skeleton Y DOF ISZ Skeleton Z DOF IFX Pore fluid X DOF relative to skeleton IFY Pore fluid Y DOF relative to skeleton IFZ Pore fluid Z DOF relative to skeleton IFX Pore fluid Z DOF relative to skeleton ISX, ISY, ISZ, IFX, IFY, IFZ = 0 Free to move in specified direction = 1 Fixed in specified direction Note: Default boundary conditions are ISX=ISY=ISZ=0 and IFX=IFY=IFZ=1 For SMAP-T3 ID = 0 Heat flow is specified = 1 Temperature is specified IDF = Time history identification number

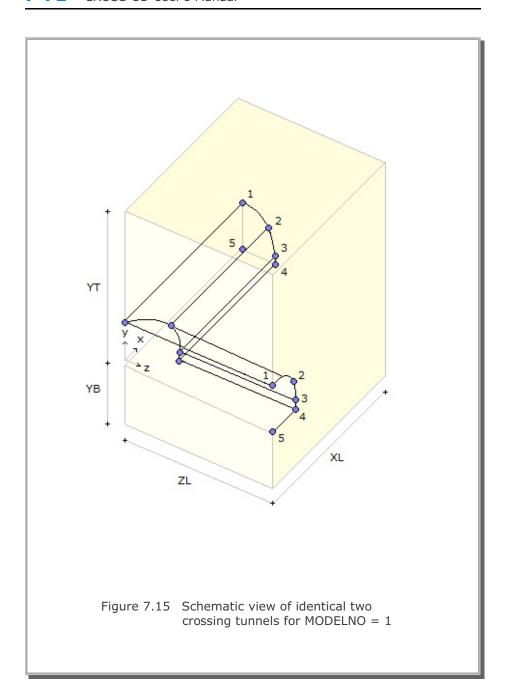
Card Group	Input Data and Definitions
Data for Each Block	MATNO, NDX, NDY, NDZ, KS, KF For SMAP-S3/3D MATNO, NDX, NDY, NDZ, IDH For SMAP-T3 MATNO Material property number NDX Number of elements in x-direction NDZ Number of elements in z-direction NDZ Number of elements in z-direction KS =-1 Element has high explosive solid phase = 0 Element has solid phase > 0 Element has joint and absolute value of KS represents face designation number KF = 0 Element has fluid phase = 1 Element has no fluid phase IDH Heat generation history ID number

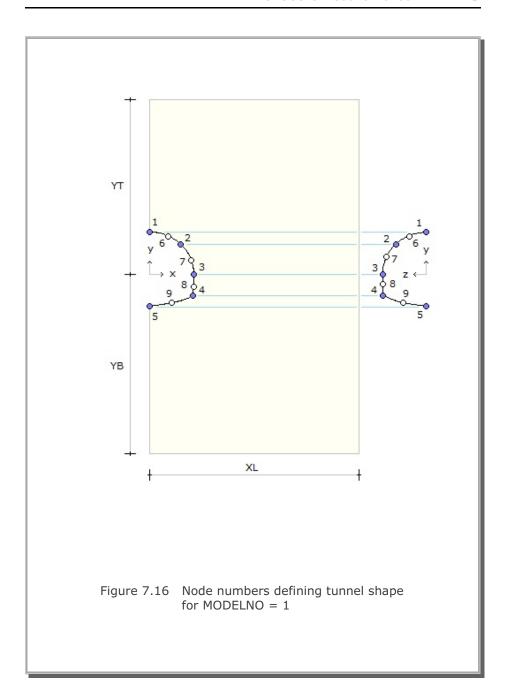
Card Group	Input Data and Definitions
1	TITLE TITLE Any title (Max = 80 characters)
	1.2
	MODELNO, KF, NSNODE, NSNEL, CMFAC (SMAP-3D) MODELNO, IH, NSNODE, NSNEL, CMFAC (SMAP-T3)
	MODELNO = 1 Identical size tunnels crossing at right angle at the same level. See Figure 7.15 and 7.16
General Information	= 2 Large and small tunnels crossing at right angle at the same level. See Figure 7.17 and 7.18
Gener	= 3 Lower and upper tunnels crossing at right angle with some clearance. See Figure 7.19 and 7.20
	KF = 0 Element has fluid phase = 1 Element has no fluid phase
	IH Heat source ID number (SMAP-T3)
	NSNODE Starting node number NSNEL Starting element number CMFAC Coordinate magnification factor

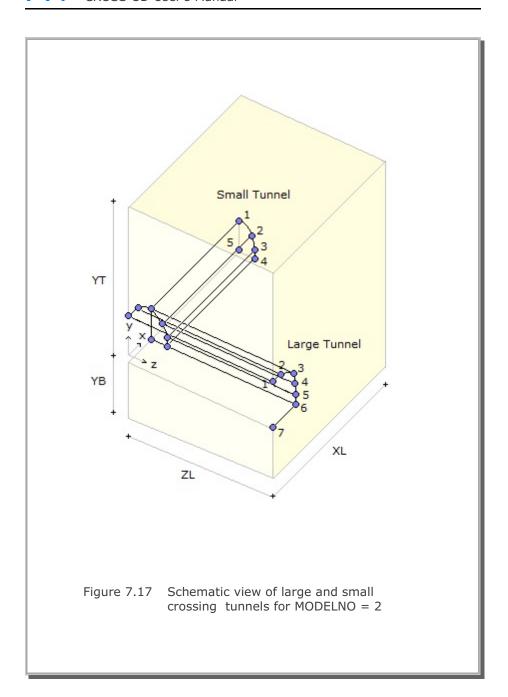
Card Group	Input Data and Definitions
2	2.1.1 XL, YB, YT, ZL, t
.16)	XL, YB, YT, ZL Problem dimensions (See Figure 7.15)
Figures 7.15 & 7	t Radial distance from tunnel surface to the boundary of near region. Default value is 20% of the tunnel width. Example, t = liner thickness
els, See	IPART, NDR, NTBND, NTOPN
ossing Tunne	IPART = 0 Whole region (from Y =-YB to Y = YT) = 1 Upper region (from Y = 0.0 to Y = YT) = 2 Lower region (from Y =-YB to Y = 0.0)
Two Cr	NDR Number of elements along radial distance (t)
Identical ⁻	NTBND Number of elements along the length (XL+YB+YT+ZL)
For MODELNO =1 (Identical Two Crossing Tunnels, See Figures 7.15 & 7.16)	NTOPN Number of elements along the perimeter of tunnel opening from node 1 to node 5. See Figure 7.16

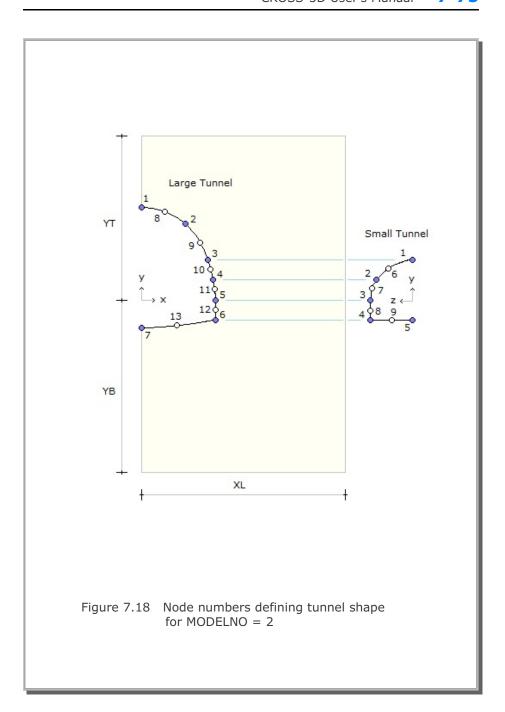
Card Group	Input Data and Definitions
	Input Data and Definitions 2.1.3 NTNODE NTNODE Cards NODE ₁ , X ₁ , Y ₁ NODE ₂ , X ₂ , Y ₂ NTNODE Number of nodes to specify tunnel shape NODE Node number X X-coordinate Y Y-coordinate Note: Nodes from 1 to 5 are required
For MODELNO =1 (Identical Two	

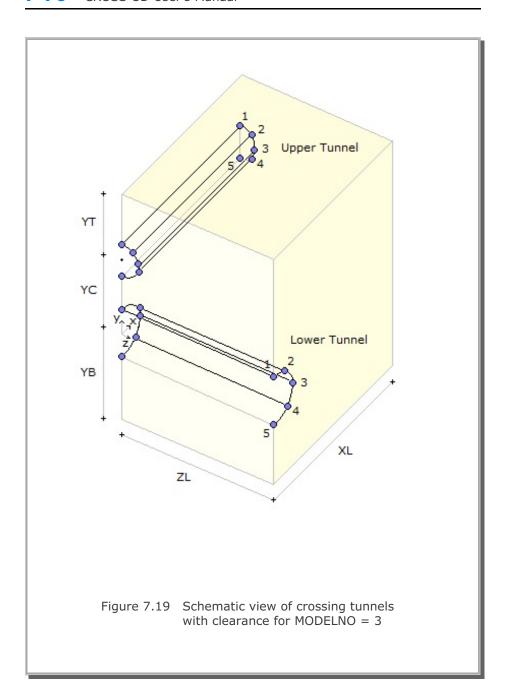
Card Group	Input Data and Definitions		
2	2.2.1 XL, YB, YT, Z	'L, t _i , t _s	
	XL, YB, YT, Z	ZL Problem dimensions (See Figure 7.17)	
For MODELNO =2 (Large and Small Crossing Tunnels, See Figures 7.17 $\&$ 7.18)	t _I , t _s	Radial distance from tunnel surface to the boundary of near region. t_i is for large tunnel and t_s for small tunnel $(t_i \ge t_s)$. Default value is 20% of the tunnel width. Example, t_s = liner thickness	
nnels, Se	IPART, NDR,	NTBND, NTOPNL, NTOPNS	
all Crossing Tun		Whole region (from Y = -YB to Y = YT) Upper region (from Y = 0.0 to Y = YT) Lower region (from Y = -YB to Y = 0.0)	
e and Sma	NDR	Number of elements along the radial distance $(t_i \text{ for large tunnel and } t_s \text{ for small tunnel})$	
) =2 (Larg	NTBND	Number of elements along the length (XL+YB+YT+ZL)	
For MODELNC	NTOPNL	Number of elements along the perimeter of large tunnel opening from node 1 to node 7 See Figure 7.18	
	NTOPNS	Number of elements along the perimeter of small tunnel opening from node 1 to node 5 See Figure 7.18	

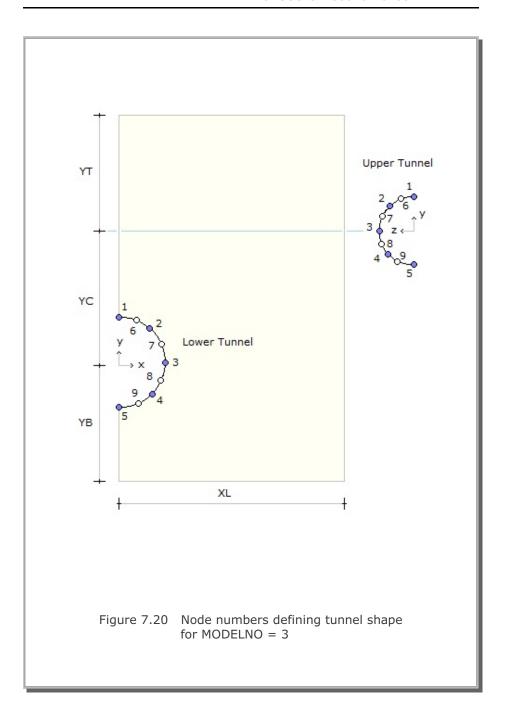

Card Group	Input Data and Definitions
For MODELNO =2 (Large and Small Crossing Tunnels, see Figures 7.17 & 7.18)	Large Tunnel Shape, See Figure 7.18 NTLNODE NTLNODE NTLNODE NODE Node number X X-coordinate Y Note: Nodes from 1 to 7 are required
For MODELNO =2 (Large and Small C	Small Tunnel Shape, See Figure 7.18 NTSNODE NTSNODE NODE ₁ , Z ₁ , Y ₁ NODE ₂ , Z ₂ , Y ₂ NTSNODE Number of nodes to specify small tunnel NODE Node number Z Z-coordinate Y Note: Nodes from 1 to 5 are required

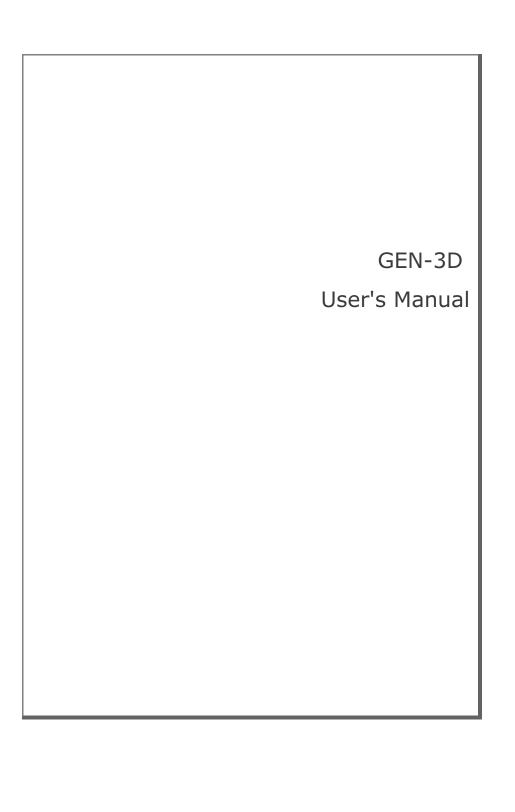

Card Group	Input Data and Definitions		
2	XL, YB, YC, YXL, YB, YC,	ΥΤ, ZL, t, t _u ΥΤ, ZL Problem dimensions (See Figure 7.19)	
, See Figures 7.19 & 7.20)	t _ı , t _u	Radial distance from tunnel surface to the boundary of near region. t_i is for lower tunnel and t_u for upper tunnel. Default value is 20% of the tunnel width. Example, $t = liner$ thickness.	
nce, S	2.3.2. NDRL, NDRU,	NTBND, NTOPNL, NTOPNU	
For MODELNO =3 (Crossing Tunnels with Clearance, See Figures 7.19 $\&$ 7.20)	NDRL	Number of elements along the radial distance (t_i) for lower tunnel	
	NDRU	Number of elements along the radial distance (t_u) for upper tunnel	
	NTBND	Number of elements along the length (XL+YB+YC+YT+ZL)	
	NTOPNL	Number of elements along the perimeter of lower tunnel opening from node 1 to node 5. See Figure 7.20	
Fc	NTOPNU	Number of elements along the perimeter of upper tunnel opening from node 1 to node 5. See Figure 7.20	


2 2.3.3 Lower Tunnel Shape, See Figures 7.20
NTLNODE NTLNODE NTLNODE Cards NTLNODE, X ₂ , Y ₂ NTLNODE NODE, X ₂ , Y ₂ NTLNODE NODE Node number X X-coordinate Y Y-coordinate Note: Nodes from 1 to 5 are required NTUNODE NODE, Z ₁ , Y ₁ NODE ₂ , Z ₂ , Y ₂ NTUNODE NODE Number of nodes to specify upper tunnel NODE Node number Z Z-coordinate Y Y-coordinate Note: Nodes from 1 to 5 are required

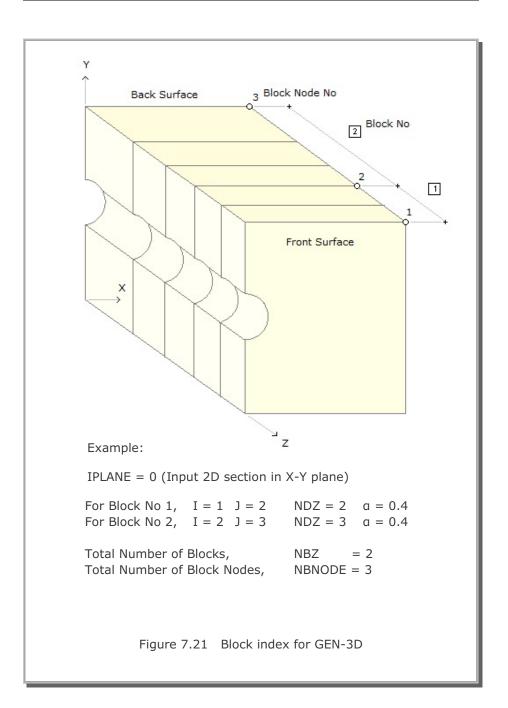

Card Group	Input Data and Definitions
3	NBOUND NBOUND NBOUND NBOUND Number of boundaries to be specified If NBOUND = 0, no data is required hereafter
	NBOUND Cards
	IBTYPE, ISX, ISY, ISZ, IFX, IFY, IFZ (SMAP-3D) IBTYPE, ID, IDF (SMAP-T3)
Boundary Conditions	IBTYPE = 1 Interior volume (overriding default) = 2 Front surface (Z = ZL) = 3 Back surface (Z = 0.0) = 4 Left surface (X = 0.0) = 5 Right surface (X = XL) = 6 Top surface For MODELNO = 1 or 2, Y = YT if IPART = 0 or 1 Y = 0.0 if IPART = 2 For MODELNO = 3, Y = YT + YC = 7 Bottom surface
	For MODELNO = 1 or 2, Y = 0.0 if IPART = 1 Y = -YB if IPART = 0 or 2 For MODELNO = 3, Y = -YB
	ISX Skeleton X DOF ISY Skeleton Y DOF ISZ Skeleton Z DOF

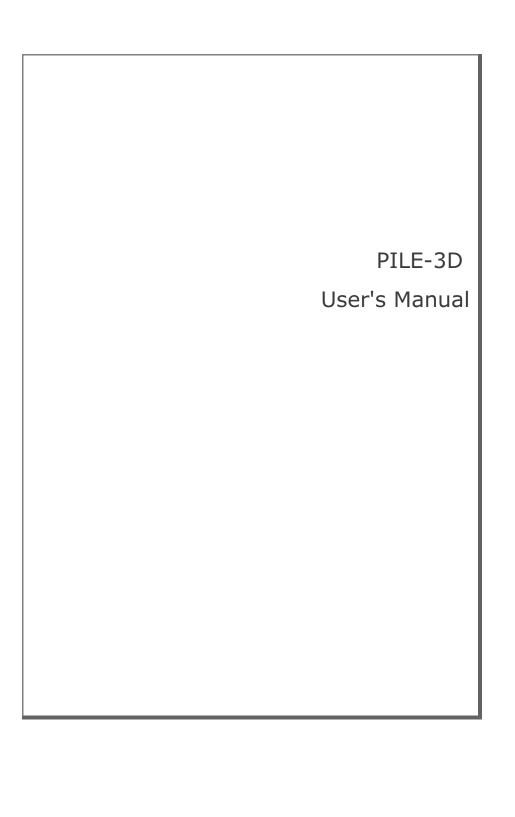

Card Group	Input Data and Definitions
	Input Data and Definitions IFX Pore fluiud X DOF relative to skeleton IFY Pore fluiud Y DOF relative to skeleton IFZ Pore fluiud Z DOF relative to skeleton ISX, ISY, ISZ, IFX, IFY, IFZ = 0 Free to move in specified direction = 1 Fixed in specified direction Note: Default boundary conditions are ISX=ISY=ISZ=0 and IFX=IFY=IFZ=1 For SMAP-T3 ID = 0 Heat flow is specified = 1 Temperature is specified IDF = Time history identification number





Card Group	Input Data and Definitions
1	1.1
	TITLE TITLE Any title (Max = 60 characters)
	1.2
	NBZ, NBNODE, NSNODE, NSNEL, IBOUND, IPLANE, CLOSE, CMFAC
	NBZ Number of blocks in z-direction NBNODE Number of block nodes in z-direction NSNODE Starting node number NSNEL Starting element number
General Information	IBOUND = 0 Do not include control boundary (Default) = 1 Include boundary as wire frame (Truss) = 2 Include boundary as plane surface (Shell) = 3 Include boundary as frame and surface
	IPLANE = 0 Input 2D section in (X, Y) plane (Default) = 1 Input 2D section in (-Z, Y) plane = 2 Input 2D section in (X,-Z) plane = 3 Input 2D section in specified plane
	ICLOSE = 0 Open loop = 1 Closed loop First section represents last section
	CMFAC Coordinate magnification factor for 2D sec.
	1.2.1
	If IBOUND = 0, skip this card X_{LEFT} , X_{RIGHT} , Y_{BOTTOM} , Y_{TOP} , Z_{BACK} , Z_{FRONT}
	X_{LEFT} , X_{RIGHT} X coordinates for left & right boundary Y_{BOTTOM} , Y_{TOP} Y coordinates for bottom & top boundary Z_{BACK} , Z_{FRONT} Z coordinates for back & front boundary

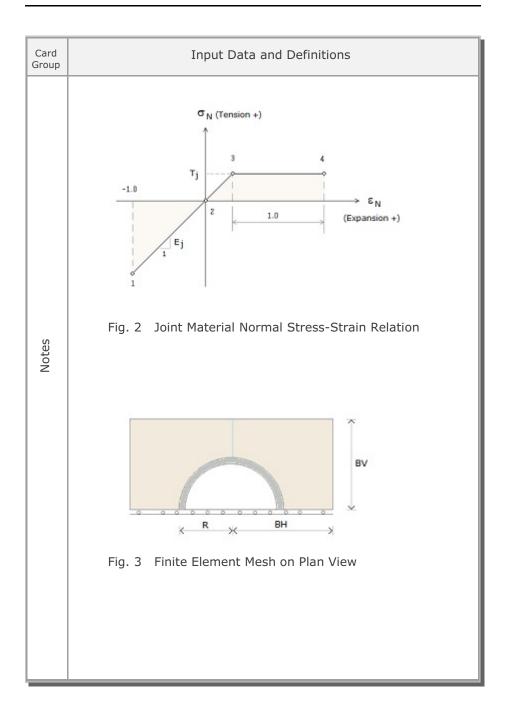

Card Group	Input Data and Definitions
1	Required only if IPLANE = 3 X_{O}, Y_{O}, Z_{O} X_{a}, Y_{a}, Z_{a} X_{b}, Y_{b}, Z_{b} X_{O}, Y_{O}, Z_{O} Coordinates defining local origin
	X_a , Y_a , Z_a Coordinates defining local x axis X_b , Y_b , Z_b Coordinates defining local y axis
_	IBZ _{BASE} , IBZ _{FRONT} , IBZ _{BACK} See Figure 7.21
General Information	$\begin{array}{ll} \text{IBZ}_{\text{BASE}} & \text{Base boundary code} \\ \text{IBZ}_{\text{FRONT}} & \text{Front surface boundary code} \\ \text{IBZ}_{\text{BACK}} & \text{Back surface boundary code} \end{array}$
General	IBZ ISZ IFZ 0 0 0 1 0 1 2 1 0 3 1 1
	ISZ Z DOF for skeleton motion IFZ Z DOF for relative pore fluid motion
	ISZ,IFZ = 0 Free to move in specified direction. = 1 Fixed in specified direction.
	For SMAP-T3 ID = ISZ and IDF = IFZ ID = 0 Heat flow is specified = 1 Temperature is specified
	IDF Time history identification number

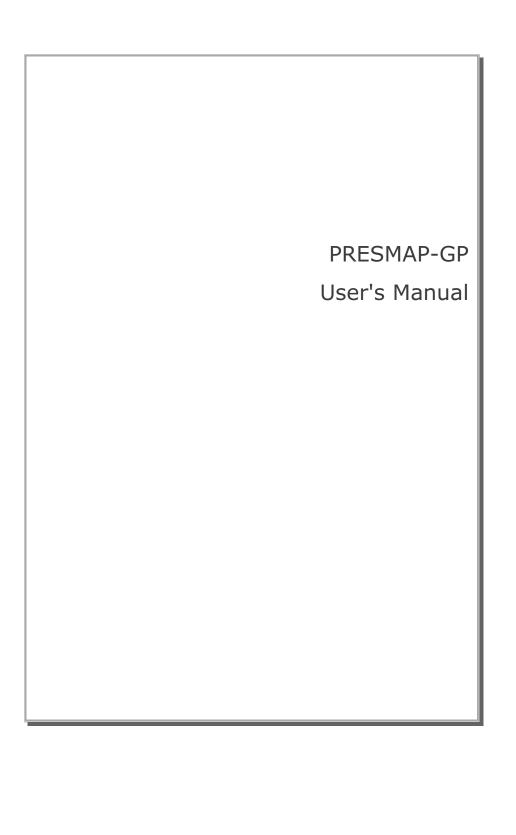

Card Group	Input Data and Definitions
	Input Data and Definitions 2.1 NODE_1, Z_1, X_1 NODE_2, Z_2, X_2 NBNODE Cards L NODE Node number Z Z coordinate X X coordinate Note: Z and X define the coordinates of center line

Card Group	Input Data and Definitions
3	3.1 BLNAME BLNAME Block name (up to 60 characters) 3.2 IBLNO IBLNO Block number
Data for Each Block	I, J, LTYPE, IMATC, IMATB, IMATT, NIXCH (See Figure 7.21) I, J End node number of a block LTYPE = 0 Straight line = 1 Circular line IMATC Material number increment for Continuum IMATB Material number increment for Beam IMATT material number increment for Truss NIXCH Number of materials for index change
Data f	NDZ, α, MC ₁ , MC ₂ , MC ₃ , MB, MT NDZ Number of elements in z-direction α = 0.5 Element length is constant = 0.3 Element length is growing from I to J = -0.3 Element length is growing from J to I MC Material number not to be modified for Continuum MB Material number not to be modified for Beam MT Material number not to be modified for Truss If MC/MB/MT has negative sign, that material will be removed 3.5 Required only for LTYPE = 1 Z _o , X _o , R, θ _b , θ _e
	$Z_{\text{o}},~X_{\text{o}}$ Coordinates of origin R Radius $\theta_{\text{b}},~\theta_{\text{e}}$ Beginning and ending angle ($^{\circ}$)

Card Group	Input Data and Definitions		
3	NIX Car N	quired only for NIXCH > 0 CCH	
ary Generation	I	RANB TRANB = 0 Do not generate transmitting boundary = 1 Generate transmitting boundary = 2 Generate element transmitting boundary f ITRANB = 0, rest of Cards are not used f ITRANB = 2, go to Card Group 4.4	
Transmitting Boundary Generation	Material Property	NTNC Number of material property set 4.2.21 NTNC MAT, RHO, CP, CS Cards MAT Material number RHO Mass density CP Compression wave speed CS Shear wave speed	

Card Group	Input Data and Definition	ons			
4	Nodal Transmitting Boundary Generation (Can be repeated in any order)				
	For surface whose normal is x-direction,	1 NPT N ₁ , N ₂ ,, N _{NPT}			
	For surface whose normal is y-direction,	2 NPT N ₁ , N ₂ ,, N _{NPT}			
eration	For surface whose normal is z-direction (Front Surface) 3				
ry Gene	For surface whose normal is z-direction (Back Surface) 4 For end of transmitting boundary generation, 0				
g Bounda	$ \begin{array}{ll} \text{NPT} & \text{Number of nodes} \\ \text{N}_1, \text{N}_2, , \text{N}_{\text{NPT}} & \text{Node numbers} \end{array} $				
Transmitting Boundary Generation	Element Transmitting Boundary Generation (Can be repeated in any order)				
	For surface whose normal is X-Y plane $\begin{array}{cc} 1 \\ NF \\ N_1 \end{array}$ For front surface, $\begin{array}{cc} 3 \\ \end{array}$	PT , N ₂ ,, N _{NPT}			
	For back surface, 4 For end of transmitting boundary generation, 0				
	$ \begin{array}{ll} \text{NPT} & \text{Number of nodes} \\ \text{N}_1, \text{N}_2, , \text{N}_{\text{NPT}} & \text{Node numbers} \end{array} $				




Card Group	Input Data and Definitions
Title	Title Title Project title 1.2 Stitle Stitle Project subtitle
Pile Properties	D, H _t , H _s , H _w , N _t D Pile diameter (m) H _t Pile length (m) H _s Pile length above ground surface (m) H _w Depth of water table (m) N _t Number of finite elements along the pile length For M Fig. 1 Pile dimension
	E_p , V_p , t_p [Steel Pipe / Liner Plate] E_p Young's modulus (t/m^2) v_p Poisson's ratio t_p Thickness (mm) To exclude steel pipe, set $t_p = 0.0$

Card Group	Input Data and Definitions			
2	2.3 N _r , d _{top} , d _{bot}			
	N_r Number of reinforcing bar layers d_{top} Top cover depth (cm) d_{bot} Bottom cover depth (cm) Note: Reinforcing bars are not considered, set $N_r = 0$			
	D _b , d _b , N _b [For Each Longitudinal Reinforcing Bar Layer] D _b Diameter (mm) d _b Cover depth (mm) N _b Number of bars			
s	E_{c} , V_{c} , ϕ , C , T , γ [Concrete]			
Pile Properties	E _c Young's modulus (t/m²) v _c Poisson's ratio φ Internal friction angle (°) c Cohesion (t/m²) T Tensile strength (t/m²) γ Unit weight (t/m³)			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	E_b , G_b , ϕ , c , T , t_b [Pile Base Interface] E_b Young's modulus normal to the base (t/m^2) G_b Shear modulus along the base (t/m^2) ϕ Friction angle along the base $(^\circ)$ c Cohesion along the base (t/m^2) T Tensile strength normal to the base (t/m^2) t_b Thickness (mm)			

Card Group		Input Data and Definitions
3	Layer	3.4.4 E, v, m, s, σ _c , T [M _{NO} = 4: In Situ Rock] E Young's modulus (t/m²) v Poisson's ratio m,s Hoek & Brown material parameters σ _c Unconfined strength of intact rock (t/m²) T Tensile strength (t/m²) P _c , e _o , v, C _c , C _r , T [M _{NO} = 9: Modified Cam-Clay] P _c Preconsolidation pressure (t/m²) e _o Initial void ratio v Poisson's ratio C _c Virgin compression index
Soil / Rock Layers	For Each Layer	C _r Swelling / recompression index M Strength parameter 3.4.12 E, V, φ, c, E _u , K [M _{NO} = 12: Generalized Decoupled] E Loading Young's modulus (t/m²) V Poisson's ratio φ Internal friction angle (°) c Cohesion (t/m²) E _u Unloading Young's modulus (t/m²) K The ratio of shear strength in triaxial extension over triaxial compression at the same mean pressure

Card Group	Input Data and Definitions
External Loads	F _V , F _H , M, N _{STEP} F _V Vertical force (t) Compression is positive F _H Horizontal force (t) M Moment (t-m) N _{STEP} Number of computational steps through which external loads are applied
Anchor Bolt	$\begin{array}{llllllllllllllllllllllllllllllllllll$
F. E. Mesh on Plan View	FineMesh, NearMesh, N _{DIV} , B _H , B _V [See Fig. 3] FineMesh = 0 Coarse mesh

Card Group	Input Data and Definitions
1	TITLE TITLE Any title (Max = 80 characters) Note: Following two cards are required at the beginning StartPresmap VersionNo = 7.000
	NBLOCK, NBNODE, NSNODE, NSNEL, IGBND, ISMAP, CMFAC, ICOMP
General Information	NBLOCK Number of blocks NBNODE Number of block nodes NSNODE Starting node number NSNEL Starting element number
	IGBND = 0 Do not generate = 1 Generate global boundary conditions based on Card 1.3
	ISMAP = 1 Mesh generation for SMAP-S2 = 2 Mesh generation for SMAP-2D = -2 Mesh generation for SMAP-T2 = 3 Mesh generation for SMAP-3D & S3 = -3 Mesh generation for SMAP-T3
	CMFAC Coordinate magnification factor
	ICOMP = 0 Do not impose = 1 Impose compatibility between blocks
	Note: If NBLOCK is negative value, the output file contains plotting information for block diagram

Card Group	Input Data and Definitions
General Information	Six cards starting from right, left, top, bottom, front, back For SMAP-S2/S3/2D/3D ISG, ISX, ISY,ISZ, IFG, IFX, IFY,IFZ, IRG, IRX, IRY,IRZ For SMAP-T2/T3 ITG, IDF, T, CF ISG, IFG, IRG = 0 None = 1 Free boundary = 2 Fixed boundary = 3 Roller boundary = 4 Specified in X, Y, Z directions ITG = 0 None = 1 Heat Flow = 2 Temperature IDF Time function identification number T Initial temperature
Ge	CF Time function coefficient 1.4 ELMIN, MAXNEL ELMIN Minimum element length MAXNEL Maximum number of elements Note: ELMIN and MAXNEL are used in PLOT-3D as control parameters to generate automatically finite elements

Card Group	Input Data and Definitions
2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Block Coordinate	NODE Node number X X-coordinate Y Y-coordinate Z Z-coordinate

Card Group			Inp	ut Data and Definitions
3	3.0 IBETYPE			
	IBETYPE	=	_	Line block (Beam or Truss Element) Quad surface block
Data for Each Block		=	3 -3	Triangle surface block Surface block generates plane strain/stress, or axisymmetric element for ISMAP = 1 or 2 and shell/ membrane element for ISMAP = 3 Hexahedron volume block Prism volume block. Volume block generates 3-D Continuum element or 3-D Joint element.
	Note:	At St At En	the artB the idBlo the	beginning of each block lock end of each block ock end of last block LastBlock

Card	Input Data and Definitions
Group	·
3	BLNAME
	BLNAME Block name (Max = 60 characters)
=1]	ICOORD, IMODE, ILAG
Block [IBETYPE	Interpolation based on ICOORD = 1 Rectangular coordinate = 2 Spherical coordinate = 3 Cylindrical coordinate
Data for Each Line Block [$IBETYPE=1$	$ \begin{tabular}{ll} Modify generated coordinate \\ IMODE &= 0 & Do not modify \\ &= 1 & Modify using reference node (M_5) as origin for ICOORD = 1. Modify coordinate based on rectangular \\ grid for ICOORD = 2 \ or \ 3. \begin{tabular}{ll} Modify generated coordinate \\ Modify using reference node (M_5) as origin for ICOORD = 2 \ or \ 3. \begin{tabular}{ll} Modify generated coordinate \\ Modify using reference node (M_5) as origin for ICOORD = 2 \ or \ 3. \begin{tabular}{ll} Modify generated coordinate \\ Modify using reference node (M_5) as origin for ICOORD = 2 \ or \ 3. \begin{tabular}{ll} Modify generated coordinate \\ Modify gene$
	ILAG = 0 Generate Beam element = 1 Generate Truss element

Card Group	Input Data and Definitions
Data for Each Line Block [IBETYPE =1]	I ₁ , I ₂ M ₃ M ₄ M ₅ , M ₆ , M ₇ See Figure 7.22 I ₁ - I ₂ Corner node number of a block M ₃ Side node number of a block M ₄ Reference node number For ICOORD = 2 M ₅ Node number defining origin of spherical coordinate For ICOORD = 3 M ₅ Node number defining reference origin of cylindrical coordinate M ₆ Node number defining cylinder axis M ₅ - M ₆ M ₇ Node number defining other local axis M ₅ - M ₇ which is normal to cylinder axis.

Card Group	Input Data and Definitions			
Data for Each Line Block [$IBETYPE=1$]	3.4	NBOUND NBOUND NBOUND NBOUND NBOUND = 0, go to Card group 3.5 3.4.2 NBOUND cards For SMAP-S2/S3/2D/3D IBTYPE, ISX, ISY,ISZ, IFX, IFY,IFZ, IRX, IRY,IRZ For SMAP-T2/T3 IBTYPE, ID, IDF, T, CF IBTYPE = 1 Interior line = 2 Node I ₁ = 3 Node I ₂ = 4 Node M ₄ Skeleton X, Y, Z DOF: ISX, ISY, ISZ Pore fluid X, Y, Z DOF relative to skeleton: IFX, IFY, IFZ Rotational DOF about X, Y, Z axis: IRX, IRY, IRZ ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ = 0 Free to move in specified direction = 1 Fixed in specified direction Default boundary conditions ISX=ISY=ISZ=0, IFX=IFY=IFZ=1, IRX=IRY=IRZ=0 For SMAP-T2/T3 ID = 0 Heat flow is specified = 1 Temperature is specified IDF Time function identification number T Initial temperature CF Time function coefficient		

Card Group		Input Data and Definitions
3	MATNO, NDX	
	MATNO, NDA	
	MATNO NDX	Material property number Number of elements in x-direction
	NDX	Number of elements in x uncerton
Data for Each Line Block [IBETYPE =1]		

Card	Input Data and Definitions					
Group	Input Data and Demilitions					
3	3.1 BLNAME					
	BLNAME Block name (Max = 60 characters)					
	ICOORD, IMODE, ILAG					
[IBETYPE =2]	Interpolation based on ICOORD = 1 Rectangular coordinate = 2 Spherical coordinate = 3 Cylindrical coordinate					
Data for Each Quad Surface Block [IBETYPE =2	$ \begin{tabular}{ll} Modify generated coordinate \\ IMODE &= 0 & Do not modify \\ &= 1 & Modify using reference node (M_{10}) as origin for ICOORD = 1. Modify coordinate based on rectangular \\ grid for ICOORD &= 2 or 3. \\ \end{tabular} $					
Data for Each C	ILAG = 0 Serendipity interpolation = 1 Lagrangian interpolation = 2 Surface sector generation					

Card Group	Input Data and Definitions
3	3.3 I ₁ , I ₂ , I ₃ , I ₄ M ₅ , M ₆ , M ₇ , M ₈ M ₉ M ₁₀ , M ₁₁ , M ₁₂
	See Figure 7.22
IBETYPE =2]	I_1 - I_4 Corner node number of a block M_5 - M_8 Side node number of a block M_9 Center node number of a block, used for ILAG = 1
e Block []	$\frac{\text{For ICOORD} = 2}{\text{M}_{10}}$ Node number defining origin of spherical coordinate
urfac	For ICOORD = 3
Data for Each Quad Surface Block [IBETYPE =2	For ICOORD = 3 M ₁₀ Node number defining reference origin of cylindrical coordinate M ₁₁ Node number defining cylinder axis M ₁₀ - M ₁₁ M ₁₂ Node number defining other local axis M ₁₀ - M ₁₂ which is normal to cylinder axis

Card Group		Input Data and Definitions
3	3.4	NBOUND NBOUND NBOUND NBOUND Number of boundaries to be specified If NBOUND = 0, go to Card group 3.5
Data for Each Quad Surface Block [IBETYPE =2]		If NBOUND = 0, go to Card group 3.5 3.4.2 NBOUND cards For SMAP-S2/S3/2D/3D IBTYPE, ISX, ISY,ISZ, IFX, IFY,IFZ, IRX, IRY,IRZ For SMAP-T2/T3 IBTYPE, ID, IDF, T, CF IBTYPE = 1
		= 1 Temperature is specified IDF Time function identification number T Initial temperature CF Time function coefficient

Card Group	Input Data and Definitions				
3	MATNO, NDX NT _{1,} NT _{2,} MAT _{1,} MAT THICK, DEN KS, KF IDH	NT _{3,} NT ₄			
Data for Each Quad Surface Block [IBETYPE =2]	MATNO NDX NDY	Material property number			
	NT MAT _i	For NT i is greater than zero, a triangle at block node i with NT i divisions along the triangle base. NT i \leq min (NDX, NDY) and NT i + NT j \leq min (NDX, NDY) where i =1, 2, 3, 4 j =2, 3, 4, 1 Material property number for the triangle at block node i. Zero value of MAT will remove the triangle.			
	THICK DENSITY	Thickness of element. For plane strain, use THICK = 1.0 Unit weight of element			
	KS = -1 = 0 > 0	Element has high explosive solid phase Element has solid phase Element has joint and absolute value of KS represents face designation number.			
	KF = 0 = 1 IDH	Element has fluid phase Element has no fluid phase Heat generation history ID number			

Only for ICOORD = 2 and ILAG = 2 NSEG NSEG NSEG ALPA ₁ , NDIV ₁ Cards ALPA ₂ , NDIV ₂ NSEG Number of segments ALPA Percent radial distance from origin NDIV Number of divisions between ALPA _{i-1} and ALPA _i Note: This option (ILAG=2) is to generate surface sector and has the following restrictions: 1. ICOORD = 2 (Spherical Coordinate) 2. IMOD = 0 Curved edge = 2 Straight edge 3. Midside and center nodes are not used. 4. NDX = NDY = NDXY = ∑ NDIV _i
= 2 Straight edge 3. Midside and center nodes are not used. 4. NDX = NDY = NDXY = Σ NDIV, NDXY NDXY ND2 α2 Origin

Card Group	Input Data and Definitions
3	BLNAME BLNAME Block name (Max = 60 characters)
	ICOORD, IMODE, ILAG
BETYPE =-2]	Interpolation based on ICOORD = 1 Rectangular coordinate = 2 Spherical coordinate = 3 Cylindrical coordinate
Surface Block [II	Modify generated coordinate IMODE = 0 Do not modify = 1 Modify using reference node (M ₈) as origin for ICOORD = 1. Modify coordinate based on rectangular
Data for Each Triangle Surface Block [IBETYPE =-2	grid for ICOORD = 2 or 3. ILAG = 0 Serendipity interpolation = 1 Lagrangian interpolation = 2 Circular surface generation

Card Group	Input Data and Definitions
Data for Each Triangle Surface Block [IBETYPE =-2]	I ₁ , I ₂ , I ₃ M ₄ , M ₅ , M ₆ M ₇ M ₈ , M ₉ , M ₁₀ See Figure 7.22 I ₁ - I ₃ Corner node number of a block M ₄ - M ₆ Side node number of a block M ₇ Center node number of a block for ILAG = 1 For ICOORD = 2 M ₈ Node number defining origin of spherical coordinate For ICOORD = 3 M ₈ Node number defining reference origin of cylindrical coordinate. M ₉ Node number defining cylinder axis M ₈ -M ₉ M ₁₀ Node number defining other local axis M ₈ -M ₁₀ which is normal to cylinder axis.

Card Group		Input Data and Definitions
Data for Each Triangle Surface Block [IBETYPE=-2]	3.4	NBOUND NBOUND Number of boundaries to be specified If NBOUND = 0, go to Card group 3.5 3.4.2 NBOUND cards For SMAP-S2/S3/2D/3D IBTYPE, ISX, ISY,ISZ, IFX, IFY,IFZ, IRX, IRY,IRZ For SMAP-T2/T3 IBTYPE, ID, IDF, T, CF IBTYPE = 1 Interior surface = 2 Line I ₁ - I ₂ = 3 Line I ₂ - I ₃ = 4 Line I ₃ - I ₁ = 5 Node I ₁ = 6 Node I ₂ = 7 Node I ₃ Skeleton X, Y, Z DOF: ISX, ISY, ISZ Pore fluid X, Y, Z DOF relative to skeleton: IFX, IFY, IFZ Rotational DOF about X, Y, Z axis: IRX, IRY, IRZ ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ = 0 Free to move in specified direction = 1 Fixed in specified direction Default boundary conditions ISX=ISY=ISZ=0, IFX=IFY=IFZ=1, IRX=IRY=IRZ=0 For SMAP-T2/T3 ID = 0 Heat flow is specified = 1 Temperature is specified IDF Time function identification number T Initial temperature CF Time function coefficient

Card Group	Input Data and Definitions		
	MATNO, NDX THICK, DEN KS, KF IDH MATNO NDXY THICK DENSITY	Y ISITY (For ISMAP = 1) (For ISMAP = 2) (For ISMAP = -2 or -3) Material property number Number of elements along triangle edge For wedge surface block, use negative NDXY Refer to Example problem 11 Thickness of element. For plane strain, use THICK = 1.0 Unit weight of element	
	KS = -1 = 0 > 0	Element has high explosive solid phase Element has solid phase Element has joint and absolute value of KS represents face designation number.	
	KF = 0 = 1 IDH	Element has fluid phase Element has no fluid phase Heat generation history ID number	

Card Group	Input Data and Definitions
	Input Data and Definitions 3.6 Only for ICOORD = 2 and ILAG = 2 NSEG NSEG
Data for E	$\begin{array}{c} 11 \\ M7 \\ ND_1 \\ \alpha_1 \\ \alpha_2 \\ 13 \\ M5 \\ \end{array}$

Card Group	Input Data and Definitions
3	BLNAME
	BLNAME Block name (Max = 60 characters)
ا 8	ICOORD, IMODE, ILAG
Data for Each Hexahedron Volume Block [IBETYPE =3	Interpolation based on ICOORD = 1 Rectangular coordinate = 2 Spherical coordinate = 3 Cylindrical coordinate
	Modify generated coordinate IMODE = 0 Do not modify = 1 Modify using reference node (M ₂₈) as origin for ICOORD = 1. Modify coordinate based on rectangular grid for ICOORD = 2 or 3.
	ILAG = 0 Serendipity interpolation = 1 Lagrangian interpolation

Card Group	Input Data and Definitions
Recarded to the same of the sa	Input Data and Definitions I1, I2, I3, I4, I5, I6, I7, I8 M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19, M20 M21, M22, M23, M24, M25, M26, M27 M28 M28, M29, M30 See Figure 7.22 I1 - I8 Corner node number of a block M9 - M20 Side node number of a block M21 - M27 Side node number of a block required for Lagrangian interpolation For ICOORD = 2 or IMODE = 1 M28 Node number defining origin of spherical coordinate for ICOORD = 2, or node number defining reference origin to the whole volume for IMODE = 1 For ICOORD = 3 M28 Node number defining reference origin of cylindrical coordinate Coordinate M29 Node number defining cylinder axis M28-M29 M30 Node number defining other local axis M28-M30 which is normal to cylinder axis

Card		Input Data and Definitions
Data for Each Hexahedron Volume Block [IBETYPE =3]	3.4	NBOUND Number of boundaries to be specified If NBOUND = 0, go to Card group 3.5

Card Group	Input Data and Definitions
Data for Each Hexahedron Volume Block [IBETYPE = 3]	IBTYPE = 25 Node I ₆ = 26 Node I ₇ = 27 Node I ₈ See Figure 7.23 Skeleton X, Y, Z DOF: ISX, ISY, ISZ Pore fluid X, Y, Z DOF relative to skeleton: IFX, IFY, IFZ Rotational DOF about X, Y, Z axis: IRX, IRY, IRZ ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ = 0 Free to move in specified direction = 1 Fixed in specified direction Default boundary conditions ISX=ISY=ISZ=0, IFX=IFY=IFZ=1, IRX=IRY=IRZ=1
	For SMAP-T2/T3 ID = 0 Heat flow is specified = 1 Temperature is specified IDF Time function identification number T Initial temperature CF Time function coefficient

Card Group	Input Data and Definitions
3	MATNO, NDX, NDY, NDZ, KS, KF (For ISMAP = 3) MATNO, NDX, NDY, NDZ, IDH (For ISMAP =-3) NT ₁ , NT ₂ , NT ₃ , NT ₄ MAT ₁ , MAT ₂ , MAT ₃ , MAT ₄ MATNO Material property number
Data for Each Hexahedron Volume Block [IBETYPE =3]	NDX Number of elements in I_2 - I_1 direction NDY Number of elements in I_2 - I_3 direction NDZ Number of elements in I_2 - I_6 direction KS = -1 Element has high explosive solid phase
edron Volume Blo	= 0 Element has solid phase > 0 Element has joint and absolute value of KS represents face designation number. KF = 0 Element has fluid phase
ach Hexah	= 1 Element has no fluid phase IDH Heat generation history ID number
Data for E	NT & MAT See descriptions on page 7-92

Card Group	Input Data and Definitions			
3	BLNAME			
	BLNAME Block name (Max = 60 characters)			
	3.2			
-3]	ICOORD, IMODE, ILAG			
ock [IBETYPE =	Interpolation based on ICOORD = 1 Rectangular coordinate = 2 Spherical coordinate = 3 Cylindrical coordinate			
Data for Each Prism Volume Block [IBETYPE = -3]	Modify generated coordinate IMODE = 0 Do not modify = 1 Modify using reference node (M ₂₂) as origin for ICOORD = 1 Modify coordinate based on rectangular grid for ICOORD = 2 or 3			
Data for E	ILAG = 0 Serendipity interpolation = 1 Lagrangian interpolation			

Card Group		Input Data and Definitions
Data for Each Prism Volume Block [IBETYPE =-3]	3.4	NBOUND NBOUND NBOUND NBOUND NBOUND = 0, go to Card group 3.5 3.4.2 NBOUND cards For SMAP-S2/S3/2D/3D IBTYPE, ISX, ISY,ISZ, IFX, IFY,IFZ, IRX, IRY,IRZ For SMAP-T2/T3 IBTYPE, ID, IDF, T, CF IBTYPE = 1

Card Group	Input Data and Definitions				
3	3.4.2				
	Skeleton X, Y, Z DOF: ISX, ISY, ISZ Pore fluid X, Y, Z DOF relative to skeleton: IFX, IFY, IFZ Rotational DOF about X, Y, Z axis: IRX, IRY, IRZ				
-3]	ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ = 0 Free to move in specified direction = 1 Fixed in specified direction				
TYPE =	Default boundary conditions ISX=ISY=ISZ=0, IFX=IFY=IFZ=1, IRX=IRY=IRZ=1				
Data for Each Prism Volume Block [IBETYPE =-3	For SMAP-T2/T3 ID = 0 Heat flow is specified = 1 Temperature is specified IDF Time function identification number T Initial temperature CF Time function coefficient				
	MATNO, NDXY, NDZ, KS, KF (For ISMAP = 3) MATNO, NDXY, NDZ, IDH (For ISMAP =-3) MATNO Material property number NDXY Number of elements along triangular edge For wedge volume block, use negative NDXY Refer to Example problem 11 NDZ Number of elements in z-direction				
	KS = -1 Element has high explosive solid phase = 0 Element has solid phase > 0 Element has joint and absolute value of KS represents face designation number.				
	KF = 0 Element has fluid phase = 1 Element has no fluid phase				
	IDH Heat generation history ID number				

Note: Mesh Control Data on File DV-GP.DAT

To control mesh generation, users can change the values in file DV-GP.DAT in the directory C:\SMAP\CT\CTDATA.

1. Variables Controlling Coinsident Nodes

RLIMIT

When the distance between two adjacent nodes is less than RLIMIT, those two nodes are assumed to be coinsident.

2. Variables Contolling Spherical Coordinate

SDCLOSE, SDTOL, SDZERO

When the angle of block corner node reaches SDCLOSE (degree), program will set 360 degrees. The tolerance angle is SDTOL (degree). When the angle of block corner node is greater than (360-SDZERO), program will set zero degree.

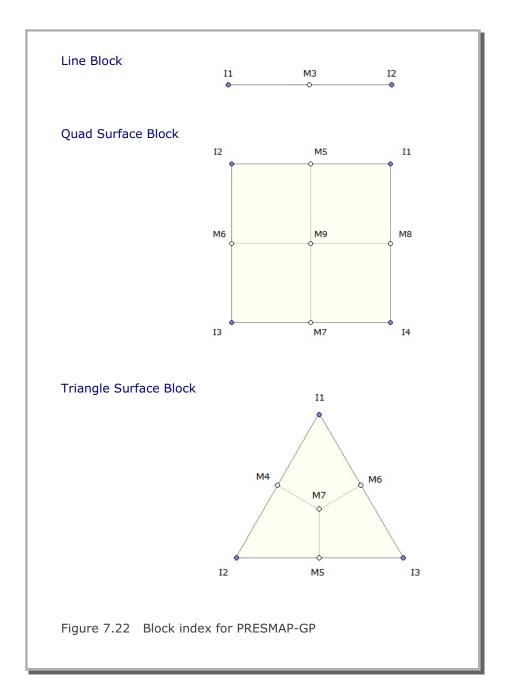
3. Variables Contolling Cylindrical Coordinate

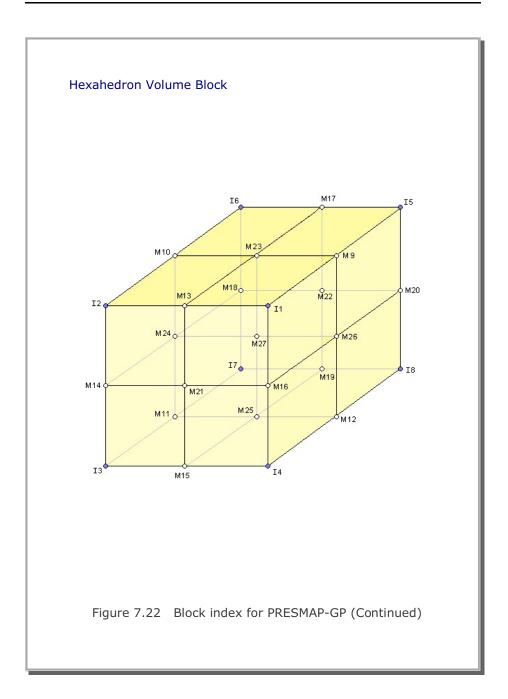
CDCLOSE, CDTOL, CDZERO

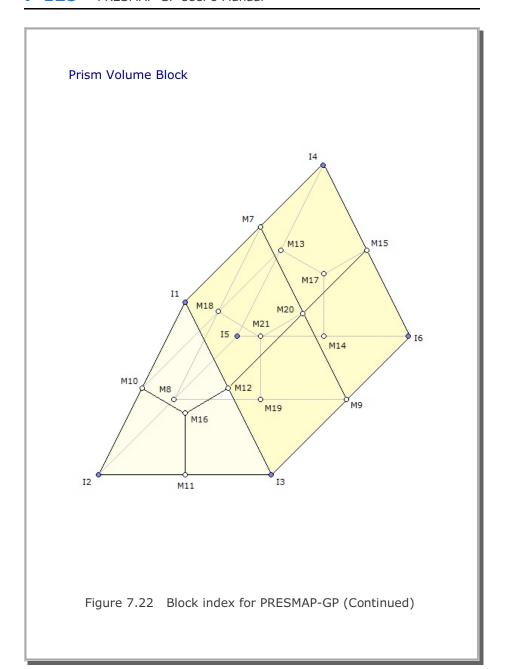
When the angle of block corner node reaches CDCLOSE (degree), program will set 360 degrees. The tolerance angle is CDTOL (degree). When the angle of block corner node is greater than (360-CDZERO), program will set zero degree.

4. For spherical block having the angle of longitude greater than Π and for the cylindrical block occupying more than two quadrants, the block node numbers referring to the origin should be prefixed by negative sign.

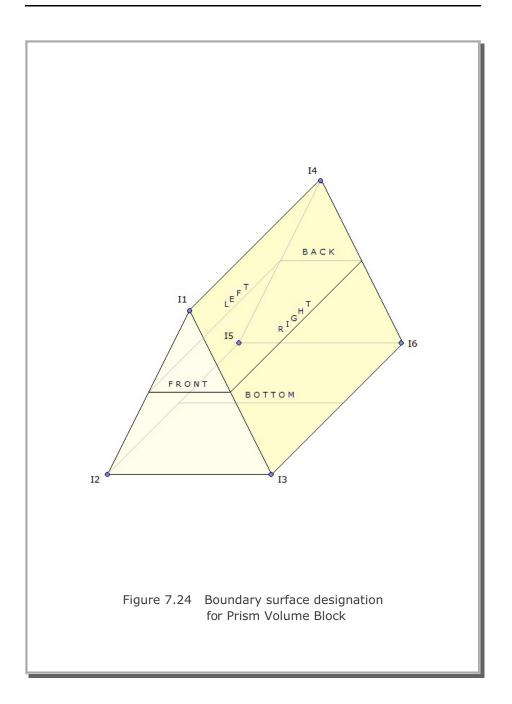
5. Current Default Values

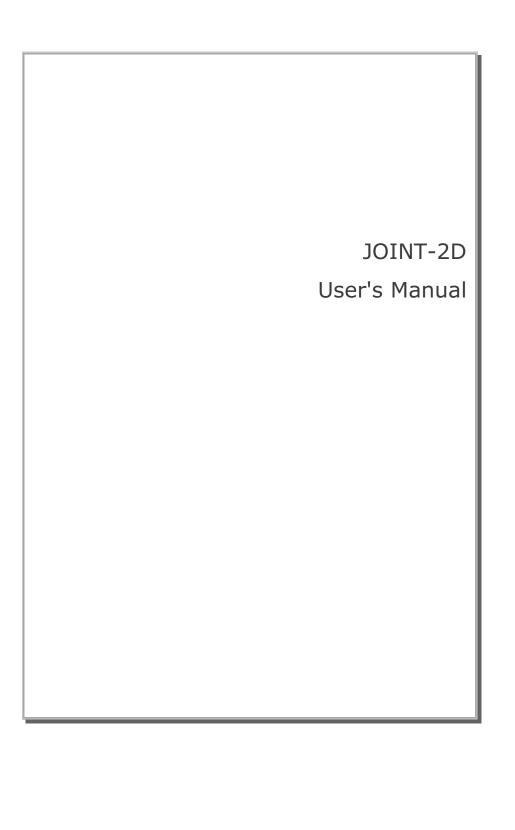

```
RLIMIT = 0.001
```

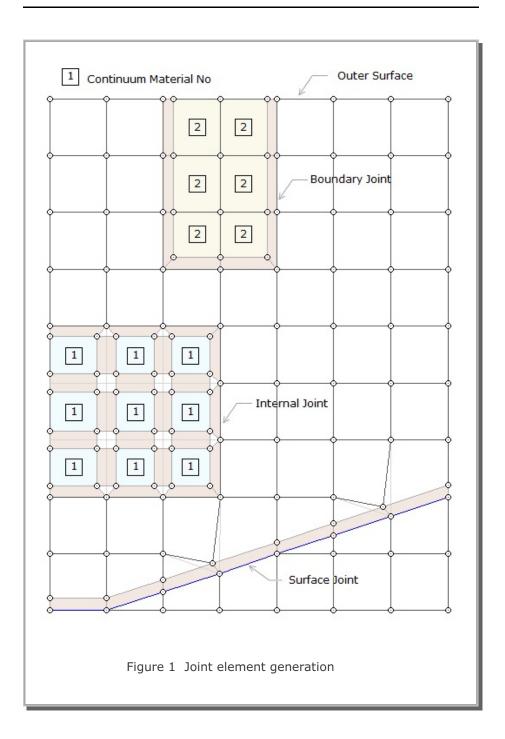

```
SDCLOSE = 359.1 SDTOL = 0.001
                                 SDZERO = 0.001
CDCLOSE = 359.1 \quad CDTOL = 0.001
                                 CDZERO = 0.001
```

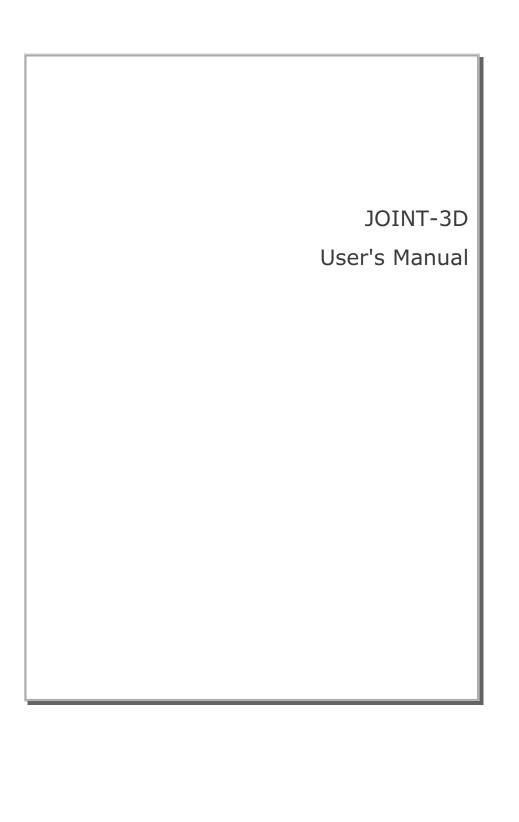

Note: Boundary Conditions


Roundan	conditions /	at nodes	aro	ganaratad	hasad	οn	following	rulaci
Doullual	/ Conditions	at noues	are	generateu	Daseu	OH	TOHOWING	Tules.


- 1. Default conditions are applied first based on block type
- 2. Default conditions can be overrided by specifying IBTYPE = 1
- 3. Higher IBTYPE overrides lower IBTYPE in a given block
- 4. Each block number defined later governs conditions along the block interface



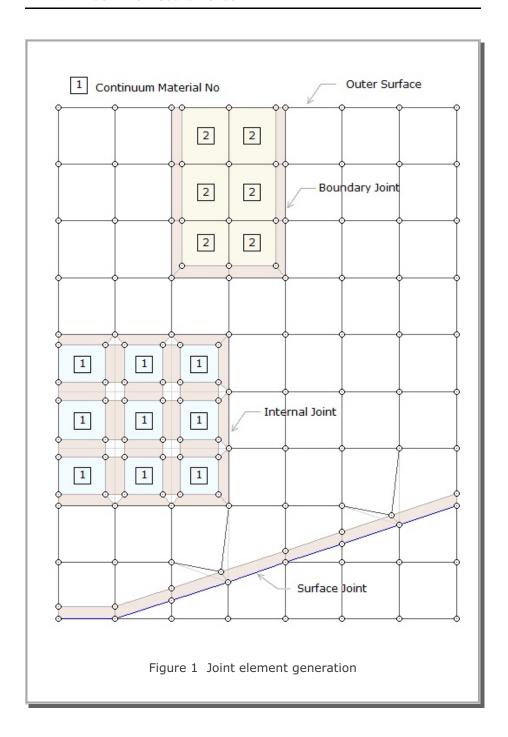




Card Group	Input Data and Definitions					
1	TITLE TITLE Any title of up to 80 characters					
	AllJoint, ThicAJ					
	Inter	erates Joint Elements along the All faces between Continuum Elements. s 2, 3, and 4 are not used.				
rmation	Num spec	erates Joint Elements for the Material bers of Continuum Elements as ified in Cards 2 and 3. 4 is not used.				
General Information	Surfa spec	erates Joint Elements for the Element ace Numbers of Continuum Elements as ified in Card 4. s 2 and 3 are ignored.				
	ThicAJ Thick	kness used for AllJoint = 0.				
	To Run JOINT-2D					
	Method 1					
	1	SMAP-2D > Run > Mesh Generator > PreSmap > Joint Specify input and output file names shown on the screen.				
	Method 2	Method 2				
	1. Select SMAP-2D > Setup > PLOT 3D Specify Joint Thickness View Factor which is greater than 0.0 Example: Joint Thickness View Factor = 1.0					
		Mesh > F.E. Mesh > Open e of Continuum Elements.				
		ould exist in the Working Directory. sh.Mes is shown in Working Directory.				

Card Group		Input Data and Definitions			
y Joint Generation	Internal Joint Generation	NumIJ, ThicIJ NumIJ Number of continuum materials for Internal Joint. If NumIJ = 0, go to Card 3 ThicIJ Thickness of Internal Joints			
		MatIJ ₁ InnerBeam ₁ OuterBeam ₁ NumIJ MatIJ ₂ InnerBeam ₂ OuterBeam ₂ Cards MatIJ Material property number of continuum element for Internal Joints (See Fig. 1) InnerBeam = 0 Do not include			
AlJoint = 1: Internal / Boundary Joint Generation	Boundary Joint Generation	NumBJ, ThicBJ, InterfaceJoint NumBJ Number of continuum materials for Boundary Joint. If NumBJ = 0, go to Card 4 ThicBJ Thickness of Boundary Joints. If negative, inside continuum elem. contacts joint face InterfaceJoint = 0 Do not include = 1 Include Interface Joint Element 3.2 NumBJ MatBJ1 InnerBeam1 OuterBeam1 MatBJ2 InnerBeam2 OuterBeam2 Cards			

Card Group	Input Data and Definitions						
4	NumSJG NumSJG NumSJG NumSJG = 0, end of data						
AllJoint = 2 : Surface Joint Generation	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
AllJoint = 2 : Su	NumSJ, Cards ElementNo ₂ SurfaceNo ₂						



Card Group	Input Data and Definitions				
1	TITLE TITLE Any title of up to 80 characters				
	AllJoint, ThicAJ				
	AllJoint = 0 Generates Joint Elements along the All Interfaces between Continuum Elements. Cards 2, 3, and 4 are not used.				
ırmation	= 1 Generates Joint Elements for the Material Numbers of Continuum Elements as specified in Cards 2 and 3. Card 4 is not used.				
General Information	= 2 Generates Joint Elements for the Element Surface Numbers of Continuum Elements as specified in Card 4. Cards 2 and 3 are ignored.				
	ThicAJ Thickness used for AllJoint = 0.				
	To Run JOINT-3D				
	Method 1				
	SMAP-3D > Run > Mesh Generator > PreSmap > Joint Specify input and output file names shown on the screen.				
	Method 2				
	1. Select SMAP-3D > Setup > PLOT 3D Specify Joint Thickness View Factor which is greater than 0.0 Example: Joint Thickness View Factor = 1.0				
	2. Select SMAP-3D > Mesh > F.E. Mesh > Open This wil open Mesh File of Continuum Elements.				
	Input file Joint.inp should exist in the Working Directory. Output File JointedMesh.Mes is shown in Working Directory.				

Card Group		Input Data and Definitions
		NumIJ, ThicIJ
	_	NumIJ Number of continuum materials for Internal Joint. If NumIJ = 0, go to Card 3
	eratior	ThicIJ Thickness of Internal Joints
eration	Internal Joint Generation	NumIJ MatIJ ₁ InnerShell ₁ OuterShell ₁ NumIJ MatIJ ₂ InnerShell ₂ OuterShell ₂ Cards
ıt Gene		element for Internal Joints (See Fig. 1) InnerShell = 0 Do not include
/ Join		= 1 Include Inner Shell element
ındarı		OuterShell = 0 Do Not include = 1 Include Outer Shell element
/ Bou		NumBJ, ThicBJ, InterfaceJoint
AllJoint = 1: Internal / Boundary Joint Generation		NumBJ Number of continuum materials for Boundary Joint. If NumBJ = 0, go to Card 4
= 1: Ir	ration	ThicBJ Thickness of Boundary Joints. If negative, inside continuum elem. contacts joint face.
AllJoint	ıt Gene	InterfaceJoint = 0 Do not include = 1 Include Interface Joint Element
	Boundary Joint Generation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Bc	MatBJ Material property number of continuum element for Boundary Joints (See Fig. 1)
		InnerShell = 0 Do not include = 1 Include Inner Shell element
		OuterShell = 0 Do not include = 1 Include Outer Shell element

Card Group	Input Data and Definitions
4	NumSJG NumSJG NumSJG NumSJG = 0, end of data
AllJoint = 2 : Surface Joint Generation	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
AllJoint = 2 : Surf	NumSJ, Cards ElementNo1 SurfaceNo1 SurfaceNo2 SurfaceNo2 SurfaceNo2 SurfaceNo2 SurfaceNo2 SurfaceNo SurfaceNo Continuum Element No SurfaceNo Continuum Element Surface No where Surface Joint is generated Note: To take new node number for corner contact element, set SurfaceNo = 0

INTERSECTION **User's Manual**

Introduction

INTERSECTION programs are mainly used to compute the locations of the 3D surfaces crossing each other. These surfaces consist of Shell Elements with different materials. The computed coordinates of intersections can be used for the construction of complicated threedimensional meshes.

There are two INTERSECTION programs provided in this manual; SHELL ELEMENT and TWO TUNNELS.

7.12.1 SHELL ELEMENT

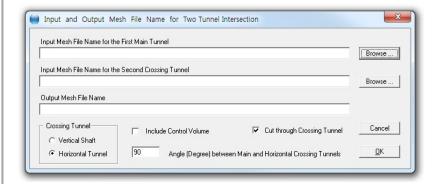
SHELL ELEMENT intersection is the basic program which can be applied to find the line of intersection of three-dimensional surfaces.

First, you need to prepare a SMAP-3D mesh file composed of Shell Elements with different material numbers.

SHELL ELEMENT intersection can be accessed by selecting menu Run → Mesh Generator → PreSmap → Intersection → Shell Element

or

Setup \rightarrow PLOT 3D \rightarrow Compute Intersection \rightarrow Yes and then open mesh file $Plot \rightarrow Mesh \rightarrow F$. E. $Mesh \rightarrow Open$


Note that computed coordinates of intersections are represented by Truss Elements.

7.12.2 TWO TUNNELS

TWO TUNNELS intersection is the special program where the second crossing tunnel cuts through the first main tunnel at some angle.

First, you need to prepare two SMAP-2D mesh files representing for cross sections of the first main and the second crossing tunnels. These cross sections are modeled by two-dimensional Beam Elements with different beam section numbers.

TWO TUNNELS intersection can be accessed by selecting menu Run \rightarrow Mesh Generator \rightarrow PreSmap \rightarrow Intersection \rightarrow Two Tunnels

Browse the input files for Main and Crossing tunnels. Select the Vertical Shaft or Horizontal Tunnel at some angles.

Main and Crossing tunnels are extended to three dimensional Shell elements using the default GEN-3D input file; ZI-A.dat and ZI-B.dat, respectively, in the sub directory Temp.

Note that output file Intersection. Mes contains Shell Elements representing both main and crossing tunnels.

For best appearance of generated meshes, you need to copy C:\SMAP\CT\CTDATA\DV-ADRGN.dat into Working Directory and then modify control parameters in Intersection for PLOT-3D.

ADDRGN User's Manual

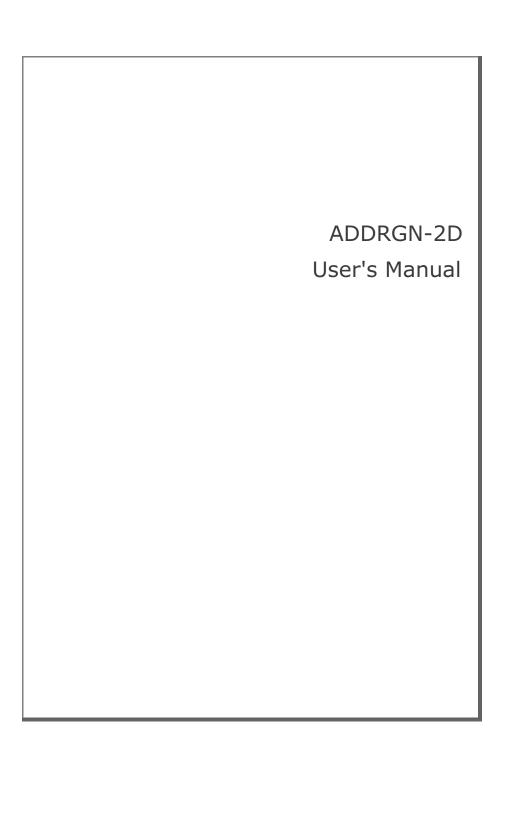
8.1 Introduction

ADDRGN is the pre-processing program which has the following two basic functions:

- Combine two different meshes
- Modify existing meshes

A problem geometry can be composed of a number of regions. Parts of the problem geometry can be generated using the PRESMAP programs described in Section 7. Then ADDRGN is used to combine two different regions (Region A and Region B). When Region B is added to Region A to make Combined Region, following restrictions are applied:

- Element numbers for Region A and Region B should be continuous
- Only those node numbers for Region B are modified to be consistent with the Region A, but element numbers for both regions do not change.


Though the program ADDRGN combines only two regions at a time, users can apply ADDRGN many times to assemble all the different regions.

ADDRGN can also be used to modify the existing meshes:

- Change coordinates
- Change boundary codes
- Cut elements
- Change material numbers

ADDRGN-2D deals with two dimensional meshes and ADDRGN-3D deals with three dimensional meshes.

ADDRGN-2D has an additional powerful feature which is very useful to generate meshes for complicated underground structures. This special feature modifies the existing meshes such that new structures can be easily added by simply specifying the geometries and material properties of structures. It can even generate a base mesh and then add new structures (IMOD=2).

Card Group	Input Data and Definitions
Mode Type	IMOD, JK IMOD = 0 Add Region B to Region A = 1 Modify existing mesh = 2 Generate base mesh and then modify. Generated base mesh is saved as BMESH.Dat =-1 Same as IMOD = 0 except it uses DOF of Region B mesh along the interface JK 1 (T2), 2 (S2), 3 (2D), 9 (W2)
Adding Region B to Region A (IMOD = 0)	FILEA FILEB FILEC FILEA Input file name containing Region A mesh FILEB Input file name containing Region B mesh FILEC Output file name to store Combined Region mesh When combining Region B mesh to Region A mesh, only Region B node numbers are changed. Element numbers for Region A and Region B should be continuous, otherwise element numbers are automatically reordered by program. 2.2 INTERFACE INTERFACE INTERFACE INTERFACE = 0 Interface is found automatically = 1 Interface is specified by user
Addi	Required only for INTERFACE = 1 NODE NODA ₁ , NODA ₂ ,, NODA _{NODE} NODB ₁ , NODB ₂ ,, NODB _{NODE} NODE Number of interface nodes. NODA _i Interface node numbers in Region A NODB _i Interface node numbers in Region B Note: NODB _i should be the same location as NODA _i

FILEA FILEM FILEA FILEM FILEA FILEM Output file name containing existing mesh FILEM Output file name to store modified mesh 3.2 NSNEL, NSNODE, NBNEL, NTNEL NSNEL NSNODE New starting continuum element number NSNODE New starting node number NBNEL New starting beam element number NTNEL New starting truss element number Note: NBNEL & NTNEL are used for IEDIT = 0, 1, 6 3.3 IEDIT, MC ₁ , MC ₂ , MC ₃ , MB, MT IEDIT = 0 Change coordinates = 1 Change boundary codes	Card	Input Data and Definitions
FILEA FILEM FILEA Input file name containing existing mesh FILEM Output file name to store modified mesh 3.2 NSNEL, NSNODE, NBNEL, NTNEL		Input Data and Definitions
NSNEL, NSNODE, NBNEL, NTNEL	3	FILEA FILEM FILEA Input file name containing existing mesh
NSNEL New starting continuum element number NSNODE New starting node number NBNEL New starting beam element number NTNEL New starting truss element number Note: NBNEL & NTNEL are used for IEDIT = 0, 1, 6		
its is its its its its its its its its i	Mesh (IMOD =1)	NSNODE New starting node number NBNEL New starting beam element number NTNEL New starting truss element number
IEDIT = 0 Change coordinates = 1 Change boundary codes = 2 Cut elements = 3 Change material numbers = 4 Build user-defined curves and material zones = 6 Change element index order MC Continuum material number to be kept MB Beam material number to be kept MT Truss material number to be kept Note: MC, MB, and MT are applicable only for IEDIT = 2 and 3	Modifying Existing	IEDIT, MC ₁ , MC ₂ , MC ₃ , MB, MT IEDIT = 0 Change coordinates = 1 Change boundary codes = 2 Cut elements = 3 Change material numbers = 4 Build user-defined curves and material zones = 6 Change element index order MC Continuum material number to be kept MB Beam material number to be kept MT Truss material number to be kept Note: MC, MB, and MT are applicable

Card Group		Input Data and Definitions
	Changing Boundary Codes (IEDIT = 1)	IRANGE IRANGE = 0 Range specified by coordinates = 1 Range specified by node numbers = 2 Range specified by line strip = 3 Range specified by material numbers 3.3.2.2.1 Required only for IRANGE = 0 X _{start} , Y _{start} , X _{end} , Y _{end} X _{start} , Y _{start} Coordinates for lower left boundary X _{end} , Y _{end} Coordiantes for upper right boundary X _{end} , Y _{end} Coordinates for upper right boundary 3.3.2.2.2 Required only for IRANGE = 1, 2, 3 NODE NOD ₁ , NOD ₂ ,, NOD _{NODE} NODE Number of nodes/materials to be specified NOD ₁ , Node/Material number (Note 1 in page 8-7) Line strip is defined counterclockwise. For IRANGE = 3, Nodes refer to Material numbers.
Modifyin	Changing	INSIDE (Not applicable for IRANGE= 3) INSIDE = 0 Apply inside of range = 1 Apply outside of range
		ISX, ISY, IFX, IFY, IRZ (SMAP-2D) IDX, IDY, IDT (SMAP-S2) ID, IDF (SMAP-T2)
		ISX, ISY X and Y DOF for skeleton motion IFX, IFY X and Y DOF for relative motion IRZ Z DOF for beam rotation
		IDX, IDY X and Y DOF for skeleton motion IDT Z DOF for beam rotation
		ID Heat flow (0), Temperature (1) specified IDF Time history identification number

Card Group		Input Data and Definitions
Card Group		Input Data and Definitions 3.3.3.1 IRANGE IRANGE = 0 Range specified by coordinates = 1 Range specified by element numbers 3.3.3.2.1 Required only for IRANGE = 0 X _{start} , Y _{start} , X _{end} , Y _{end}
OD = 1)	. = 2)	X_{start} , Y_{start} Coordinates for lower left boundary X_{end} , Y_{end} Coordinates for upper right boundary
Modifying Existing Mesh (IMOD = 1)	Cutting Elements (IEDIT	Required only for IRANGE = 1 NOEL NEL ₁ , NEL ₂ ,, NEL _{NOEL} NOEL NOEL NUMBER of elements to be specified NEL _i Element number (See Note 2)
Modif	O	INSIDE = 0 Apply inside of range = 1 Apply outside of range
		Note 1: NOD ₁ , -NOD ₂ generates from NOD ₁ to NOD ₂ Note 2: NEL ₁ , -NEL ₂ generates from NEL ₁ to NEL ₂

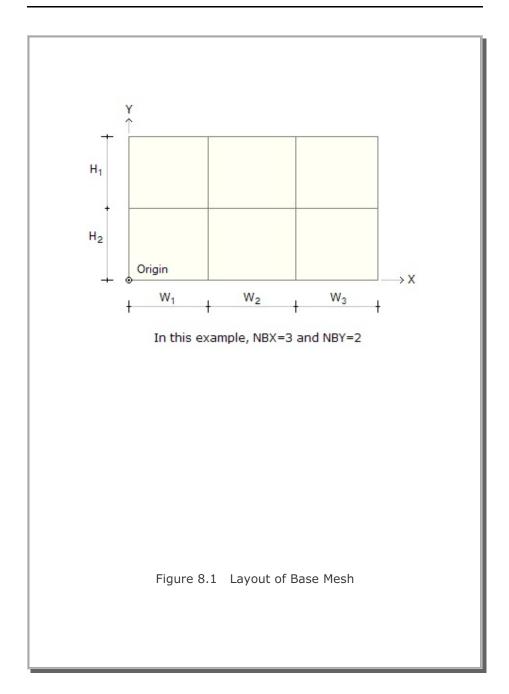
Starty S
Note: When new material number is zero, keep the old material number

Card Group		Input Data and Definitions
	Build User-Defined Curves and Material Zones (IEDIT = 4)	Input Data and Definitions 3.3.5.1 NODE NOD1, NOD2,, NODNODE NOD1 Node number of nodes which are not movable NOD1 Node number 3.3.5.2 NOEL NEL1, NEL2,, NELNOEL NOEL Number of elements whose nodal coordinates are not movable NEL1 Element number 3.3.5.3 IBOUND IBOUND = 0 Do not apply = 1 Nodal coordinates outside of rectangle are not movable Required only for IBOUND = 1 XLEFTLY XRIGHT, YBOTTOM, YTOP
	Suild Use	X_{LEFTt} , X_{RIGHT} , Y_{BOTTOM} , Y_{TOP} Coordinates of rectangle
	п п	3.3.5.4 NGROUP, IGTITL X _{REF} , Y _{REF}
		NGROUP Number of curve groups. X _{REF} , Y _{REF} Coordinates of reference point
		IGTITL = 0 Do not specify = 1 Specify group title

Card Group		Input Data and Definitions
Modifying Existing Mesh (IMOD = 1)	Build User-Defined Curves and Material Zones (IEDIT = 4) For Each Curve Group	GTITL (For IGTITL= 1) MTYPE, IGPOST, OVERLAY, GCOLOR, GLTYPE, GLTHIC, GHIDE GTITL Group title MTYPE = 1 Generate lines & remove within closed loop = -1 Remove elements outside closed loop = 2 Generate lines = -2 Generate slip lines with joint elements = 3 Assign new material number

Card Group		Input Data and Definitions				
Modifying Existing Mesh (IMOD = 1)	Build User-Defined Curves and Material Zones (IEDIT = 4)	FOR MTYPE = 1 or MTYPE = 2 LTP, LMAT FOR MTYPE = -2 MATNO _{JT} , DD _{JT} , THIC _{JT} , LTP _I , LMAT _I , LTP _O , LMAT _O FOR MTYPE = 3 MATNO, DD, LTP, LMAT FOR MTYPE = -3 MATNO, DD, MATNO _{JT} , DD _{JT} , THIC _{JT} , LTP _I , LMAT _I , LTP _O , LMAT _O FOR MTYPE = 4 MATNO, DD, LTP, LMAT, MATOId FOR MTYPE = -4 MATNO, DD, MATNO _{JT} , DD _{JT} , THIC _{JT} , LTP _I , LMAT _I , LTP _O , LMAT _O , MATOId DD = KF (SMAP-2D) = DEN (SMAP-S2) = IDH (SMAP-T2) DD _{JT} = KF _{JT} (SMAP-D) = DEN _{JT} (SMAP-D) = DEN _{JT} (SMAP-T2) FOR MTYPE = 4 or -4 MATOID takes initial value if MATNO < 0 MATOID takes MATNO + 1 if MATOID = 0				

Card Group			Input	t Data and Definitions
Modifying Existing Mesh (IMOD = 1)	Build User-Defined Curves and Material Zones (IEDIT = 4)	For Each Curve Group	= 1 DEN IDH MATNO _{JT} KF _{JT} = 0 = 1 DEN _{JT} IDH _{JT} THIC _{JT} LTP = 0 Do = 2 Ger Hea = 3 Ger Con = 4 Extr = 5 Ten LMAT LTP _o , LMAT _o Note: For ne take n For ne are full	nerate beam element at pipe (IDFNP=LFUN), T2 nerate truss element vection (IDFNC=LFUN, IDFNT=LFUN+1), T2 ernal heat flow (ID=0, IDF=LFUN), T2 nperature boun. (ID=1, IDF=LFUN), T2 Material No for line element Subscript i refers to inner face


Card Group		Input Data and Definitions		
Modifying Existing Mesh (IMOD = 1)	Build User-Defined Curves and Material Zones (IEDIT = 4)	For Each Curve Group	Required only for IGPOST= 1 NAC, NDAC (MATOId) NAC, NDAC (MATNO) NAC, NDAC (MATNO _π) NAC, NDAC (LMAT) NAC, NDAC (LMAT _I) NAC Active step number NDAC Deactive step number Required only for IGPOST= 1 CHKBOX (Mesh) CHKBOX (Principal Stress) CHKBOX (Deformed Shape) CHKBOX (Truss) CHKBOX (Truss) CHKBOX (Contour) CHKBOX (Reference Line) CHKBOX = 0 Do not plot = 1 Plot the checked item Note: IGPOST= 1 will generate main file Group.man for element activity and post file Group.pos for PLOT-2D	

Card Group		Input Data and Definitions				
3			NPOINT, MOVE, IREF, X _{LO} , Y _{LO}			
	laterial Zones (IEDIT = 4)		NPOINT Number of points defining X and Y coordinates of segments. Point numbering is counter-clockwise			
			MOVE = 0 Generated coordinates are movable = 1 Generated coordinates are not movable			
(IMOD = 1)	iterial Zones		IREF = 0 Do not apply = 1 Local Origin (X_{LO}, Y_{LO}) is relative to Reference Point in Card 3.3.5.4			
Mesh	nd Ma	h Curv	X_{Lo} , Y_{Lo} Coordinates of Local Origin			
Modifying Existing Mesh (IMOD = 1)	Build User-Defined Curves and Mate	Build User-Defined Curves and Material Zones (IEDIT = For Each Curve Group	NPOINT NP ₂ , X ₂ , Y ₂ Cards L NP Point number X X-coordinate Y Y-coordinate			

Card Group	Input Data and Definitions				
3	= 4)		NS	3.3.5 NSI	NSEGMENT Number of segments If NSEGMENT is equal to NPOINT, the generated curve is closed loop. If NSEGMENT is less than NPOINT, the generated curve is open. GX, GY Group No coordinates used in AIG
Modifying Existing Mesh (IMOD = 1	erial	For Each Curve Group	For Each Segment	SEGNO, LTYPE, NDIV, IEND SEGNO Segment No in sequential order LTYPE = 1 Straight line = 2 Elliptical line NDIV Number of divisions. Use NIDV=0 for default divisions. Use negative value to consider intermediate points as line path only. IEND = 0 Include beginning and ending points but do not register contact information =-1 Include beginning point = 1 Include ending point = 2 Same as IEND=0 but register and split =-2 Same as IEND=2 but do not split = 3 This segment is only for reference line For LTYPE = 2 X _O , Y _O , R _X , R _Y , θ _b , θ _e X _O , Y _O Arc Origin relative to (X _{LO} , Y _{LO}) R _X , R _Y Radius in X and Y axis, respectively θ _b , θ _e Beginning and ending angle (°) See Figure 8.2	

Card Group		Input Data and Definitions				
3	3.6	3.6.1 NumMATC MAT, I ₁ , I ₂ , I ₃ , I ₄ , MATC, KS, KF (SMAP-2D) MAT, I ₁ , I ₂ , I ₃ , I ₄ , MATC, THIC, DEN (SMAP-S2) MAT, I ₁ , I ₂ , I ₃ , I ₄ , MATC, IDH (SMAP-T2)				
OD = 1)	EDIT = 6)	NumMATC MAT Material number I ₁ , I ₂ , I ₃ , I ₄ Element corner index numbers MATC New material property number KS, KF, THIC, DEN. IDH Refer to Mesh File user manual				
Modifying Existing Mesh (IMOD =	Change Element Index Order(IEDIT	NumSECB SEC, I, J, MSEC, K NumSECB Number of beam sections SEC Section number I, J Element corner index numbers MSEC New material section number K New reference node number				
	Cha	NumMATT MAT, I, J, MATT, K NumMATT Number of truss materials MAT Material number I, J Element corner index numbers MATT New material property number K New reference node number Note: Index numbers are required as input. To keep the existing value, set it to -10.				

Card Group	Input Data and Definitions
	NBX, NBY, IB_LEFT, IB_RIGHT, IB_TOP, IB_BOTTOM NBX Number of blocks in X direction NBY Number of blocks in Y direction IB = 0 Free boundary = 1 Roller boundary 4.2 X_{O} , Y_{O} , Y_{WT} X_{OI} , Y_{OI} , Y_{WT} Y_{WT} NBX Origin of X and Y coordinates Y coordinate of water table (SMAP-2D) Initial temperature (SMAP-T2) 1.3 NBX Cards X_{OI} , X_{OI}
Gener	H _i Vertical length of block ΔY _i Minimum vertical element length
	a _Y = 0.5 Element length is constant = 0.3 Element length is growing from top to bottom =-0.3 Element length is growing from bottom to top
	IGMOD IGMOD = 0 Do not modify = 1 Modify generated base mesh If IGMOD = 1, go to Card 3.1

Case	$\theta_{ t b}$	$\theta_{\rm e}$
1	30 °	310 °
2	310 °	30 °
3	-50 °	30 °
4	30 °	-50 °

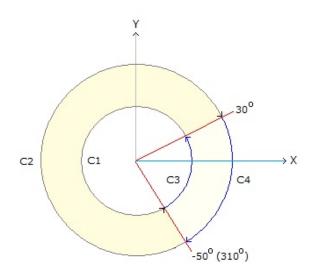
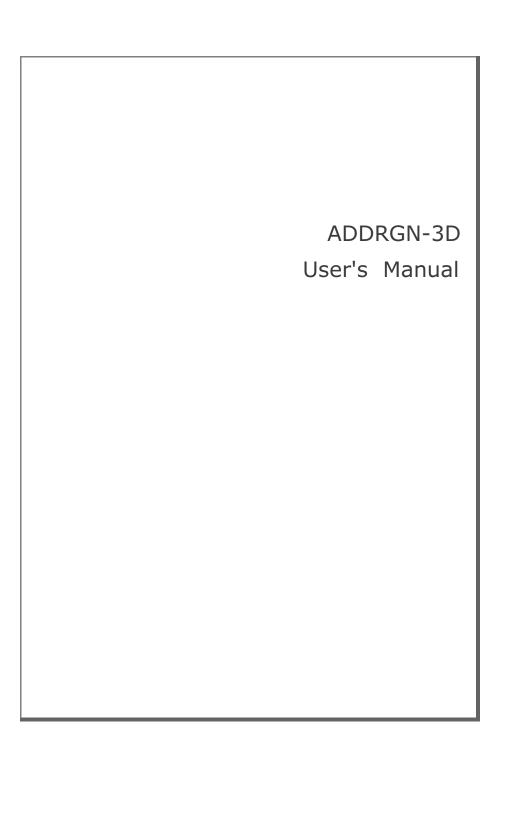



Figure 8.2 Examples of arc specification

Card	Input Data and Definitions
Group	Input Data and Definitions
IMOD Type	IMOD IMOD = 0 Add Region B to Region A = 1 Modify existing mesh =-1 Same as IMOD = 0 except it uses DOF of Region B mesh along the interface
Adding Region B to Region A (IMOD = 0)	FILEA FILEB FILEC FILEA Input file name containing Region A mesh FILEB Input file name containing Region B mesh FILEC Output file name to store Combined Region mesh Note: When combining Region B mesh to Region A mesh, only Region B node numbers are changed. Element numbers for Region A and Region B should be continuous, otherwise element numbers are reordered automatically by program.

Card Group	Input Data and Definitions
	Input Data and Definitions 3.1 FILEA FILEM FILEM FILEM Output file name containing existing mesh FILEM Output file name to store modified mesh 3.2 NSNEL, NSNODE, NBNEL, NTNEL NSNEL NSNEL New starting continuum element number NSNODE New starting node number NTNEL NEW starting truss element number NTNEL NEW starting truss element number NTNEL NEW Starting truss element number Note: NBNEL & NTNEL are used for IEDIT = 0, 1, 6 3.3 IEDIT, MC ₁ , MC ₂ , MC ₃ , MB, MT IEDIT = 0 Change coordinates = 1 Change boundary codes = 2 Cut elements = 3 Change material numbers = -2 Cut elements in continuum blocks = -3 Change material numbers so as to match those in continuum blocks = 5 Add two layers of shell elements with joint elements in-between = 6 Change element index order MC Continuum material number to be kept MB Beam material number to be kept MC MB, and MT are applicable for IEDIT = 2, 3, -2, and -3
	Required only for IEDIT = -2 or IEDIT = -3 FILEB FILEB Input file name containing continuum block mesh

Card Group	Input Data and Definitions				
	Changing Boundary Codes (IEDIT = 1)	Input Data and Definitions 3.3.2.3 INSIDE (Not applicable for IRANGE= 5) INSIDE = 0 Apply inside of range = 1 Apply outside of range = 1 Apply outside of range 3.3.2.4 ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ (SMAP-3D) ID, IDF (SMAP-T3) ISX, ISY, ISZ X, Y, Z DOF for skeleton motion IFX, IFY, IFZ X, Y, Z DOF for relative fluid motion IRX, IRY, IRZ X, Y, Z DOF for rotation ISX, ISY, ISZ, IFX, IFY, IFZ, IRX, IRY, IRZ = 0 Free to move in specified direction = 1 Fixed in specified direction ID = 0 External heat flow is specified = 1 Temperature is specified IDF Identification number for time dependent function If IDF = 0, external heat flow is zero at all times			

Card Group	Input Data and Definitions				
Modifying Existing Mesh (IMOD = 1)	Cutting Elements (IEDIT = 2)	IRANGE Range specified by IRANGE = 0 Coordinates = 1 Eement numbers 3.3.3.2.1 Required only for IRANGE = 0 X _{start} , Y _{start} , Z _{start} , X _{end} , Y _{end} , Z _{end} X _{start} , Y _{start} , Z _{start} Coordinates for lower left boundary X _{end} , Y _{end} , Z _{end} Coordinates for upper right boundary 3.3.3.2.2 Required only for IRANGE = 1 NOEL NEL ₁ , NEL ₂ ,, NEL _{NOEL} NOEL Number of elements to be specified NEL ₁ Element number (See Note 2 in page 8-24) 3.3.3.3 INSIDE INSIDE = 0 Apply inside of range = 1 Apply outside of range			

3.3.4 IRANGE IRANGE = 0 Range specified by coordinates = 1 Range specified by element numbers 3.3.4.1 Required only for IRANGE = 0 X _{start} , Y _{start} , Z _{start} , X _{end} , Y _{end} , Z _{end} X _{start} , Y _{start} , Z _{start} , Coordinates for lower left boundary X _{end} , Y _{end} , Z _{end} Coordinates for upper right boundary Coordinates for upper right boundary 3.3.4.2 Required only for IRANGE = 1 NOEL NOEL NEL ₁ , NEL ₂ ,, NEL _{NODE} NOEL NOEL NEL ₁ , NEL ₂ ,, NEL _{NODE} INSIDE INSIDE = 0 Apply inside of range = 1 Apply outside of range 3.3.4.4 MATC, MATB, MATT	Card Group	Input Data and Definitions				
New material number for MATC Continuum element MATB Beam element MATT Truss element Note: When new material number is zero,	Group 3	= 3)	IRANGE IRANGE = 0 Range specified by coordinates = 1 Range specified by element numbers 3.3.4.1 Required only for IRANGE = 0 X _{start} , Y _{start} , Z _{start} , X _{end} , Y _{end} , Z _{end} X _{start} , Y _{start} , Z _{start} Coordinates for lower left boundary X _{end} , Y _{end} , Z _{end} Coordinates for upper right boundary 3.3.4.2 Required only for IRANGE = 1 NOEL NEL ₁ , NEL ₂ ,, NEL _{NODE} NOEL Number of elements to be specified NEL ₁ Element number (See Note 2 in page 8-24) 3.3.4.3 INSIDE INSIDE = 0 Apply inside of range = 1 Apply outside of range 3.3.4.4 MATC, MATB, MATT New material number for MATC Continuum element MATB Beam element MATB Beam element Truss element			

Card Group		Input Data and Definitions
Modifying Existing Mesh (IMOD = 1)	Add Two Layers of Shell with Joint in-between (IEDIT = 5)	MATS ₁ , MATJ, MATS ₂ , THICJ MATS ₁ 1 ST layer shell material number MATJ Joint material number MATS ₂ 2 nd layer shell material number THICJ Apparent thickness of joint element Note: If the value of THICJ is negative, joint elements are generated inward 3.5.2 NSECTION, NUMNODE NSECTION Number of sections (Max=200) NUMNODE Number of nodes per section (Max=200)
Modifying	Add Two Layers of Sl	NOD ₁ , NOD ₂ , , NOD _{NUMNODE} NOD _i Node number Note: List node numbers in counter clockwise If NOD ₁ =NOD _{NUMNODE} , the loop is closed

Card Group		Input Data and Definitions			
Modifying Existing Mesh (IMOD = 1)	Change Element Index Order (IEDIT = 6)	MAT, I ₁ , I ₂ , I ₃ , I ₄ , I ₅ , I ₆ NumMATC MAT I ₁ , I ₂ , I ₃ , I ₄ , I ₅ , I ₆ , I ₇ , I ₈ MATC KS, KF, IDH 3.6.2 NumSECB SEC, I, J, K, MSEC NumSECB SEC I, J K N	, I ₇ , I ₈ , MATC, KS, KF (SMAP-3D) , I ₇ , I ₈ , MATC, IDH (SMAP-T3) Number of continuum materials Material number Element corner index numbers New material property number Refer to Mesh File user manual umber of beam sections ection number lement corner index numbers ew reference node number ew material section number		
Σ		MAT M I, J EI MATT N K N Note: Index num	umber of truss materials aterial number lement corner index numbers ew material property number ew reference node number bers are required as input. e existing value, set it to -10.		

Supplement Program

9.1 Introduction

Supplement programs contain supporting programs which are useful to prepare input data for pre-and main-processing programs and can be accessed through Run → Mesh Generater → Supplement menu. Currently, there are five programs available: EDIT, XY, CARDS, SHRINK FILE and CUDSS.

EDIT is used to run text editor.

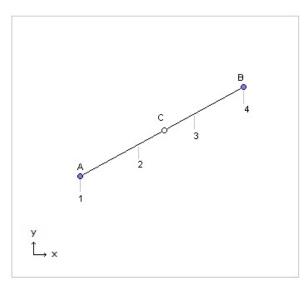
XY computes coordinates of mid points, cross points, or normal points.

CARDS generates Element Activity data in Card Group 8 in Section 4.4 Main File.

SHRINK FILE removes extra blank spaces before carriage return. This will reduce the size of the file.

CUDSS simulates cyclic undrained direct simple shear test.

9.2 EDIT

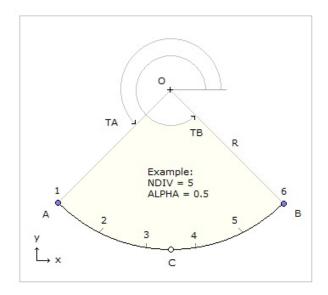

EDIT uses Windows text editor Wordpad to creat, modify, or list file.

9.3 XY

Program XY can be used to compute midpoints, intersection points and normal points of straight line and circular arc. The program is useful to construct the block diagrams of the problem geometry.

To run program XY, simply select XY from SUPPLEMENT Menu and follow instructions shown on the screen.

NF = 1 Compute Midpoint on Straight Line


Example: NDIV = 3 and ALPHA = 0.5

INPUT:

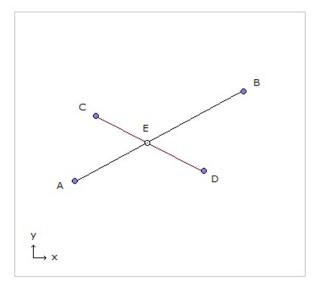
XA, YA, XB, YB NDIV, ALPHA

XA, YA = Xand Ycoordinates of AXB, YB = X and Y coordinates of BNDIV = Number of division ALPHA = Geometric ratio

NF = 2 Compute Midpoint on Circular Arc

 X_{o} , Y_{o} , TB TA, NDIV, ALPHA

R = Radius

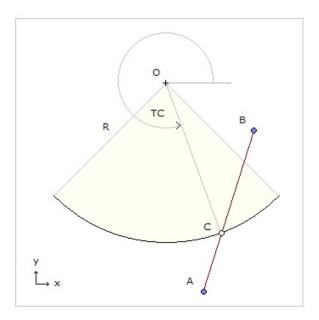

 X_{o} , Y_{o} = X and Y coordinates of origin O TA,TB = Angles (degrees) of A and B

NDIV = Number of division ALPHA = Geometric ratio

If ALPHA = 0.5, midpoint C is located in half way between A and B

If ALPHA < 0.5, midpoint is close to A If ALPHA > 0.5, midpoint is close to B

NF = 3Compute Intersection Point of Two Straight Lines

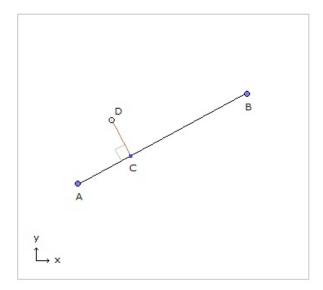


INPUT:

XA, YΒ YA, XB, XC, YC, XD, YD

X and Y coordinates of A XA, YA = XB, YB = X and Y coordinates of B XC, YC = X and Y coordinates of CXD, YD = X and Y coordinates of D

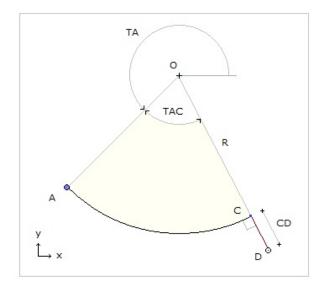
NF = 4 Compute Intersection point of Arc & Straight Line



R, X_o, XA, YA, XB, YB

Radius

 X_{\circ} , Y_{\circ} = X and Y coordinates of origin O XA, YA = X and Y coordinates of point A X and Y coordinates of point B XB, YB =


NF = 5 Compute Points Normal to Straight Line

XA, YA, XB, YB AC, CD

XA, YA = X and Y coordinates of A XB, YB = X and Y coordinates of B AC Distance between A and C CD Distance between C and D

NF = 6 Compute Points Normal to Circular Arc

R, X_{o} Y_o, TA TAC, CD

= Radius

 X_{o} , Y_{o} = X and Y coordinates of origin O

TA = Angle (degree) of A

TAC = Angle (degree) between A and C

CD = Distance between C and D

9.4 CARDS

Program CARDS is included to aid for users to prepare SMAP-3D input cards. Currently, there is only one routine which generates Element Activity in Card Group 8 in Section 4.4 Main File.

You are asked to type in following input data to generate element activity and deactivity;

```
NEL (start) NEL(end) NAC NDAC
```

where

NEL (start) Starting element number NEL (end) Ending element number

NAC Load step at which elements from NEL(start)

to NEL(end) are activated.

NDAC Load step at which elements from NEL(start)

to NEL(end) are deactivated.

Generated element activity data will be written in the output file you specified.

9.5 SHRINK FILE

SHRINK FILE is included to remove extra blank spaces before carriage return. This will reduce the size of the file where blank spaces are existing before the carriage return.

9.6 CUDSS

CUDSS is to simulate cyclic undrained direct simple shear test. PM4Sand material model is used to represent skeleton behavior, developed by Boulanger, R. W. And ziotopoulou, k. (Version 3.1).

Input File CUDSS.inp for PM4Sand Material Model

Card Group	Cyclic Undrained Direct Simple Shear Simulation			
PM4Sand Material Model	Title Title Title			
	$\sigma_{vo}{}'$ K_o σ_s $\sigma_{vo}{}'$ Initial effective vertical stress			
	K_o Coefficient of earth pressure at rest α_s Initial static shear stress ratio : $\alpha_s = \tau_s / \sigma_{vo}'$ where τ_s is initial static shear stress			
	3.0 CSR γ _{max}			
	CSR Cyclic stress ratio : CSR = τ_p / σ_{vo} ' where τ_p is cyclic peak shear stress γ_{max} Maximum cutoff shear strain			
	4.0 NCYCLE Δγ			
	NCYCLE Maximum number of cycles Δγ Shear strain increment (Default 1.0e-05)			

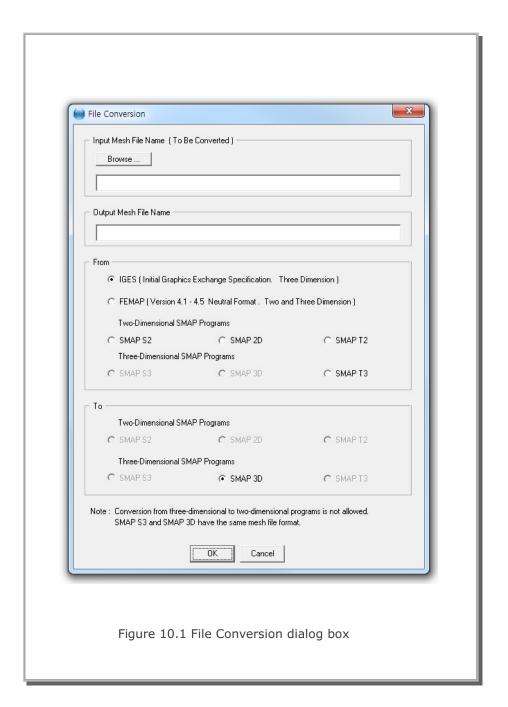
Cyclic Undrained Direct Simple Shear Simulation					
For MODELNO = 21 [PM4Sand Model] D _R G _o h _{po} p _a N _s Secondary Parameters (Skip these cards for N _s = 1) h _o e _{max} e _{min} n ^b n ^d A _{do} Z _{max} C _z C _e φ _{cv} v _o C _{GD} C _{DR} C _{kaf} Q R m F _{sed.min} p _{sed} D _R Apparent relative density (Fraction) G _o Shear modulus coefficient h _{po} Contraction rate parameter p _a Atmospheric pressure (10.33 for stress unit t/m²) N _s Secondary parameter specification: 0 = Yes, 1 = No h _o Control parameter for ratio of plastic to elastic modulus e _{max} Maximum void ratio (Default 0.8) e _{min} Minimum void ratio (Default 0.5) n ^b Control parameter for transition from contr. to dilation A _{do} Bolton's dilatancy parameter Z _{max} Maximum allowable fabric dilatancy tensor z C _z Control parameter for adjusting strain accumulation rate φ _{cv} Critical state effective friction angle (Default 33") v _o Poisson's ratio (Default 0.3) C _{GD} Factor for shear modulus degradation (Default 2.0) C _{DR} Control parameter for rotated dilatancy surface C _{kaf} Control parameter for rotated dilatancy surface C _{kaf} Control parameter for post-shaking elastic modulus reduction Mean effective stress for post-shaking reconsolidation Set -1 for default values of secondary model parameters.					
p _{sed} Mean effective stress for post-shaking reconsolidation					

File Conversion

10.1 Introduction

PRESMAP programs described in Section 7 generate Mesh Files which contain the geometric information of structures to be analyzed. The format of SMAP-3D Mesh File is presented in detail in Section 4.3.

Three-dimensional Mesh Files can also be created by IGES (Initial Graphics Exchange Specification) or FEMAP (Version 4.1 - 4.5, neutral format) program which is developed by EDS.


In this section, we will briefly discuss Mesh File conversion under Mesh Generater \rightarrow File Conversion menu:

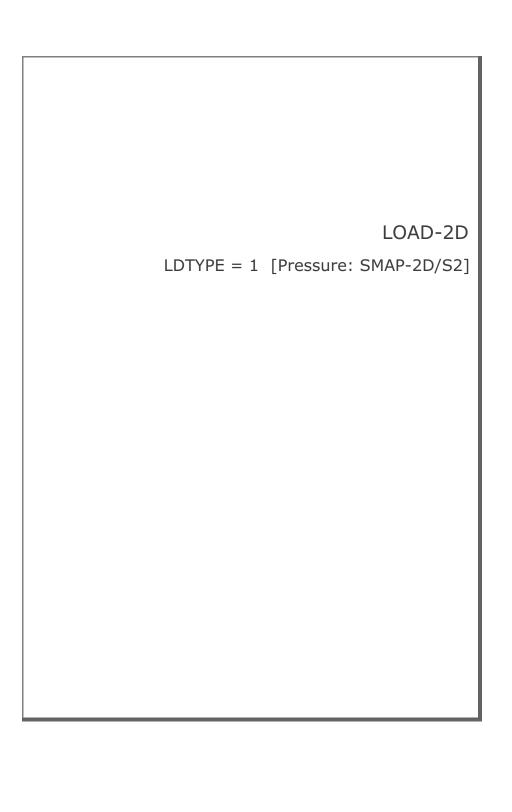
10.2 Conversion to SMAP-3D Mesh File

Following Mesh Files can be converted to SMAP-3D Mesh File format:

- Mesh Files generated for two-dimensional SMAP programs (SMAP-S2, SMAP-2D, and SMAP-T2)
- Mesh Files generated for three-dimensional SMAP program (SMAP-T3)
- IGES (Initial Graphics Exchange Specification)
- FEMAP (Version 4.1 4.5, neutral format)

Figure 10.1 shows File Conversion dialog box with Input Mesh File options.

LOAD **User's Manual**

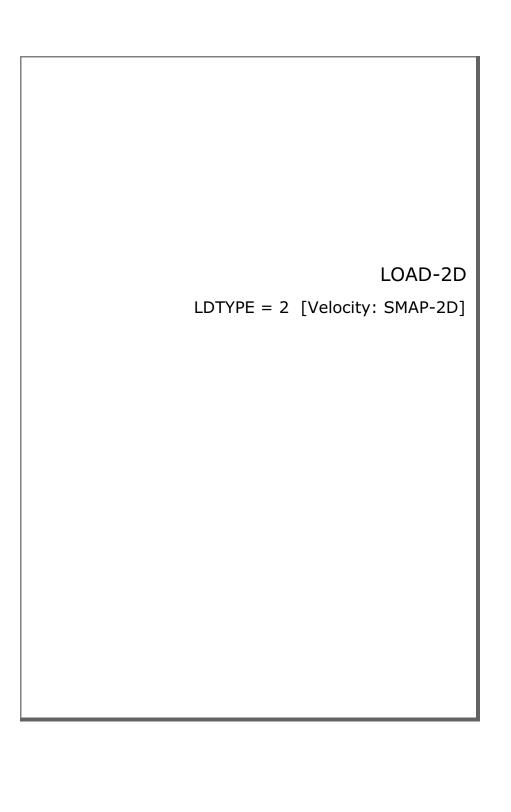

11.1 Introduction

LOAD is the pre-processing program which generates nodal values of external forces, specified velocities, initial velocities, accelerations and transmitting boundaries.

Before you prepare LOAD input data in this section, you should have a Mesh File generated from PRESMAP/ADDRGN programs. That is, LOAD input is referred to the geometric surfaces given in the Mesh File.

Generated LOAD output file contains load data which is compatible to the format of Card Group 9 described in Section 4.4 Main File.

LOAD-2D deals with two dimensional meshes and LOAD-3D deals with three dimensional meshes.


Card Group			Input Data and Definitions (Pressure)		
ıent		TITLE TITLE Any title (Max = 60 characters)			
Title & Element		NCTYPE NCTYPE = 0 Axisymmetric element Y-axis is axis of symmetry = 1 Plane strain element (Thickness=1.0) = 2 Plane stress element (Thickness=1.0) = 3 Spherically symmetric element (SMAP-2D)			
2	NUI	MLS NUM	LS Number of loading surfaces where external tractions are specified (Max = 20)		
	2.2 ace	LSTYPE LSTYPE = 0 All specified nodes = 1 Line strip = 2 Points = 3 Node group = 4 Element group			
Loading Surface	For Each Loading Surface		NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990)		
Lc	For Each	= 0, 1,	NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node		
		LSTYPE	Line strip (LSTYPE=1) is defined counterclockwise. For LSTYPE=1 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.		

Card Group			Input Data and Definitions (Pressure)
Loading Surface	For Each Loading Surface	LSTYPE = 3 (Node Group)	NUMNODG NUMNODG NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100) 2.2.5 NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows NSR = 5
		LSTYPE = 4 (Element Group)	NUMNELG NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface number (See Mesh File Card 3.2) S

Card Group		Input Data and Definitions (Pressure)					
3	3.1 NUM	NUMLP					
		NUMLP Number of pressure functions (Max = 20)					
Pressure Function	ure Function	LPNO, LPTYPE LPNO Pressure function number LPTYPE = 0 Use effective surface = 1 Use actual surface Note: Effective surface is normal to force direction (Ex. Wind load) 3.2.2 a_{xo} , a_{xx} , a_{xy} a_{xi} Coefficients defining surface traction in the x-direction. $P_x = a_{xo} + a_{xx}x + a_{xy}y$					
	For Each Pressure Function	$\begin{array}{lll} a_{yo}, & a_{yx}, & a_{yy} \\ & a_{yi} & & Coefficients \ defining \ surface \ traction \\ & & in \ the \ y-direction. \\ & & P_y = a_{yo} + a_{yx}x + a_{yy}y \end{array}$					
		$a_{no},\ a_{nx},\ a_{ny}$ $a_{ni} \qquad \qquad Coefficients\ defining\ surface\ traction \\ normal\ to\ surface.\ Acting\ on\ actual\ surface$ $P_n = a_{no} + a_{nx}x + a_{ny}y$					

Card Group	Input Data and Definitions (Pressure)						
4	4.1 NUM	LH NUMLH Number of pressure histories (Max = 20)					
	4.2	LHNO Pressure history number					
Pressure History	For Each Pressure History	NUMTP NUMTP Number of time points (Max = 1000)					
Pressu	For Each Pre	T ₁ , T ₂ ,, T _{NUMTP} T _i Specified time					
		C ₁ , C ₂ ,, C _{NUMTP} C _i Pressure intensity at time T _i					

Card Group	Input Data and Definitions (Pressure)
5	LSNO, LPNO, LHNO
	LSNO Loading surface number LPNO Pressure function number LHNO Pressure history number
	Repeat Card 5.1 until the last card (LSNO=0) is specified
Pressure Specification	
Pre	

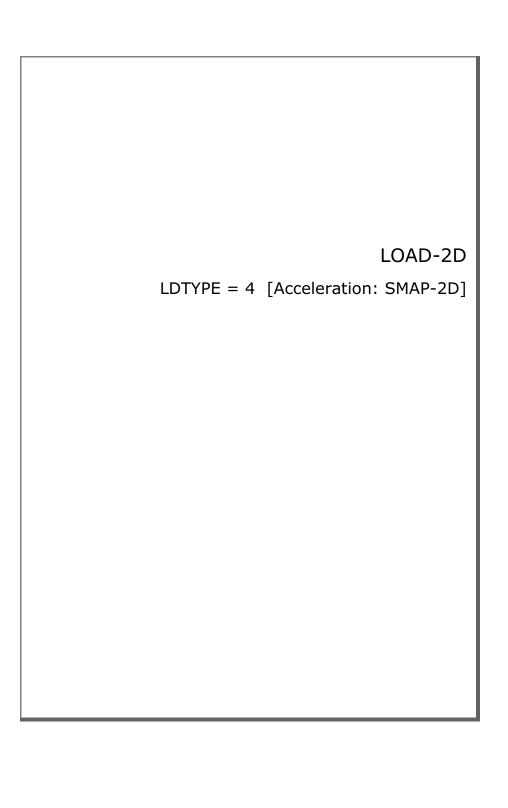
Card Group			Input Data and Definitions (Velocity)			
ınt		TITLE TITLE Any title (Max = 60 characters)				
Title & Element		NCTYPE NCTYPE = 0 Axisymmetric element Y-axis is axis of symmetry = 1 Plane strain element (Thickness=1.0) = 2 Plane stress element (Thickness=1.0) = 3 Spherically symmetric element (SMAP-2D)				
2	NUI	MLS NUM	LS Number of loading surfaces where velocities are specified (Max = 20)			
	2.2 2.2.1 LSNO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Line strip = 2 Points = 3 Node group = 4 Element gr					
Loading Surface	For Each Loading Surface	2	NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990)			
TC PC	For Each	= 0, 1,	NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node			
		LSTYPE	Line strip (LSTYPE=1) is defined counterclockwise. For LSTYPE=1 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.			

Card Group			Input Data and Definitions (Velocity)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 3 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NODE ICR
		(0	NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100)
		LSTYPE = 4 (Element Group)	NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface number (See Mesh File Card 3.2) S

Card Group		Input Data and Definitions (Velocity)
3	3.1 NUI	MLV
		NUMLV Number of velocity functions (Max = 20)
	3.2	3.2.1 LVNO
		LVNO Velocity function number
		3.2.2 a _{xo} , a _{xx} , a _{xy}
Velocity Function	Function	a_{xi} Coefficients defining velocity in x-direction $V_x = a_{xo} + a_{xx} x + a_{xy} y$
Velocity	For Each Velocity Function	3.2.3 a _{yo} , a _{yx} , a _{yy}
	For Each	a_{yi} Coefficients defining velocity in y-direction $V_y = a_{yo} + a_{yx} x + a_{yy} y$
		a _{no} , a _{nx} , a _{ny}
		a_{ni} Coefficients defining velocity normal to surface $V_n = a_{no} + a_{nx} x + a_{ny} y$

Card		Input Data and Definitions (Velocity)
Group		input data and definitions (velocity)
4	^{4.1} NUN	NUMLH Number of velocity histories (Max = 20)
	4.2	LHNO Velocity history number
Velocity History	ty History	NUMTP NUMTP Number of time points (Max = 1000)
Velocity	For Each Velocity History	T ₁ , T ₂ ,, T _{NUMTP} T _i Specified time
		4.2.4 C ₁ , C ₂ ,, C _{NUMTP} C _i Velocity intensity at time T _i

Card Group	Input Data and Definitions (Velocity)
5	LSNO, LVNO, LHNO
	LSNO Loading surface number LVNO Velocity function number LHNO Velocity history number
Velocity Specification	Repeat Card 5.1 until the last card (LSNO=0) is specified

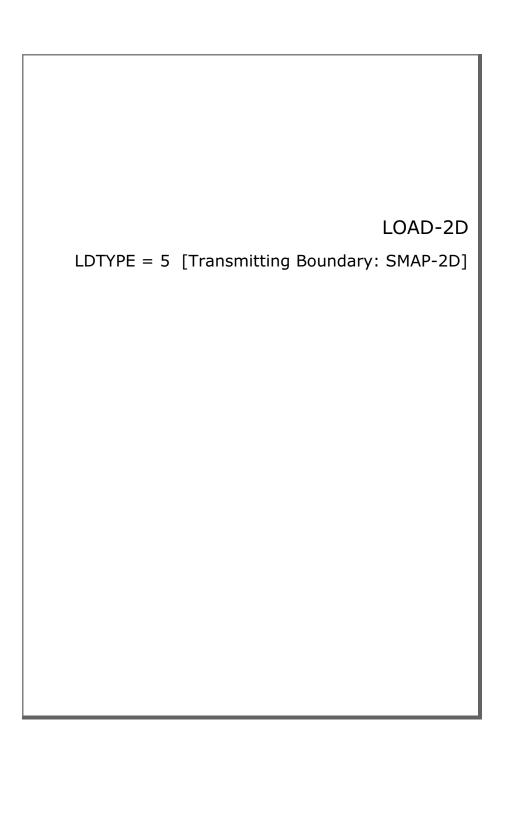

LOAD-2D
LDTYPE = 3 [Initial Velocity: SMAP-2D]

Card Group			Input Data and Definitions (Initial Velocity)		
1	TIT	LE TITLI	E Any title (Max = 60 characters)		
Title & Element	NCTYPE NCTYPE = 0 Axisymmetric element Y-axis is axis of symmetry = 1 Plane strain element (Thickness=1.0) = 2 Plane stress element (Thickness=1.0) = 3 Spherically symmetric element (SMAP-2D)				
2	NUI	MLS NUM	LS Number of loading surfaces where initial velocities are specified (Max = 20)		
	2.2	2.2.1 LSN	IO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Line strip = 2 Points = 3 Node group = 4 Element group		
Loading Surface	For Each Loading Surface	2	NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990)		
) 	For Each	= 0, 1,	NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node		
		LSTYPE	Line strip (LSTYPE=1) is defined counterclockwise. For LSTYPE=1 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.		

Card Group			Input Data and Definitions (Initial Velocity)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 3 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NODE ICR
		LSTYPE = 4 (Element Group)	2.2.6 NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface number (See Mesh File Card 3.2) Example NSR = 5 JCR = 5 NJR = 4 ICR = 30 NIR = 3

aber of initial velocity functions (Max = 20)
aber of initial velocity functions (Max = 20)
Initial velocity function number
Coefficients defining initial velocity in the x-direction
$V_{ix} = a_{xo} + a_{xx}x + a_{xy}y$
Coefficients defining initial velocity in the y-direction $V_{iy} = a_{yo} + a_{yx}x + a_{yy}y$
Coefficients defining initial velocity
normal to the surface $V_{in} = a_{no} + a_{nx}x + a_{ny}y$

Card Group	Input Data and Definitions (Initial Velocity)
4	LSNO, LIVNO
	LSNO Loading surface number LIVNO Initial velocity function
	Repeat Card 4.1 until the last card (LSNO=0) is specified
u	
oecificatic	
Initial Velocity Specification	
Initial V	

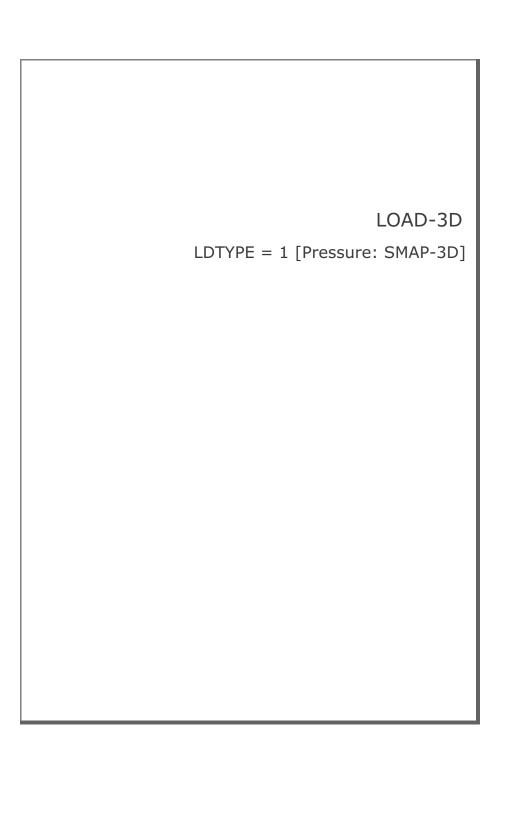

Card Group		Input Data and Definitions (Acceleration)				
ıt t	1.1 TIT	LE TITLI	E Any title (Max = 60 characters)			
Title & Element		TYPE NCTY	YPE = 0 Axisymmetric element Y-axis is axis of symmetry = 1 Plane strain element (Thickness=1.0) = 2 Plane stress element (Thickness=1.0) = 3 Spherically symmetric element (SMAP-2D)			
2	2.1 NUI	MLS NUM	LS Number of loading surfaces where accelerations are specified (Max = 20)			
	2.2	2.2.1 LSN	IO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Line strip = 2 Points = 3 Node group = 4 Element group			
Loading Surface	For Each Loading Surface	2	NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990)			
9 	For Each	= 0, 1,	NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node			
		LSTYPE	Line strip (LSTYPE=1) is defined counterclockwise. For LSTYPE=1 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.			

Card Group			Input Data and Definitions (Acceleration)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 3 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number in a row ICR Node number increment in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NOME ICR NOM
		LSTYPE = 4 (Element Group)	NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface number (See Mesh File Card 3.2) Example NSR = 5 JCR = 5 NJR = 4 ICR = 30 NIR = 3

Card Group		Input Data and Definitions (Acceleration)	
3	3.1 NUN	1LA	
	N	UMLA Number of acceleration functions (Max = 20)	
	3.2	LANO Acceleration function number	
		3.2.2 a _{xo} , a _{xx} , a _{xy}	
Acceleration Function	For Each Acceleration	no	a_{xi} Coefficients defining acceleration in the x-direction $A_x = a_{xo} + a_{xx}x + a_{xy}y$
		3.2.3 a _{yo} , a _{yx} , a _{yy}	
		a_{yi} Coefficients defining acceleration in the y-direction $A_{y} = a_{yo} + a_{yx}x + a_{yy}y$	
		3.2.4 a _{no} , a _{nx} , a _{ny}	
		a_{ni} Coefficients defining acceleration normal to the surface $A_n = a_{no} + a_{nx}x + a_{ny}y$	

Card Group	Input Data and Definitions (Acceleration)					
4	NUMLH Number of acceleration histories (Max = 20)					
Acceleration History	4.1	LHNO LHNO Acceleration history number 4.2.2 NUMTP NUMTP Number of time points (Max = 1000) 4.2.3 T ₁ , T ₂ ,, T _{NUMTP}				
	For Each Acceleration History	T _i Specified time 4.2.4 C ₁ , C ₂ ,, C _{NUMTP} C _i Acceleration intensity at time T _i				

Card Group	Input Data and Definitions (Acceleration)
5	5.1
	LSNO, LANO, LHNO
	LSNO Loading surface number
	LANO Acceleration function number
	LHNO Acceleration history number
	·
	Repeat Card 5.1 until the last card (LSNO=0) is specified
tion	
ifica	
Acceleration Specification	
S no	
ratio	
le le l	
Acc	



Card Group	Input Data and Definitions (Transmitting Boundary)				
1	TITLE TITLE Any title (Max = 60 characters)				
Title & Element	NCTYPE NCTYPE = 0 Axisymmetric element Y-axis is axis of symmetry = 1 Plane strain element (Thickness=1.0) = 2 Plane stress element (Thickness=1.0) = 3 Spherically symmetric element (SMAP-2E)				
2	NUMLS NUMLS Number of loading surfaces where transmitting boundaries are specified (Max = 20)				
Loading Surface	Loading Surface	2.2.1 LSN	NO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Line strip = 2 Points = 3 Node group = 4 Element group		
		For Each Loading Surface PE = 0, 1, 2	NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990)		
	For Each		NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node		
			LSTYPE	Line strip (LSTYPE=1) is defined counterclockwise. For LSTYPE=1 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.	

Card Group	Input Data and Definitions (Transmitting Boundary)			
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)	
Loading Surface	For Each Loading Surface	LSTYPE = 3 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows 5	
			2.2.6 NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface number (See Mesh File Card 3.2) S 10 15 20	

Card Group	Input Data and Definitions (Transmitting Boundary)				
3		NUMMP NUMMP Number of different material property (Max=5)			
Material Property	For Each Material Property	MATNO Material property number 3.2.2 RO, E, V RO Mass density E Young's modulus V Poisson's ratio			

Card Group	Input Data and Definitions (Transmitting Boundary)				
4	4.1 LSNO, MATNO				
	LSNO Loading surface number MATNO Material property number For MATNO = 0, loading surface is related to continuum element surface Refer to Card 9.6.3 in SMAP-2D User's Manual				
	Repeat Card 4.1 until the last card (LSNO=0) is specified				
Transmitting Boundary Specification					

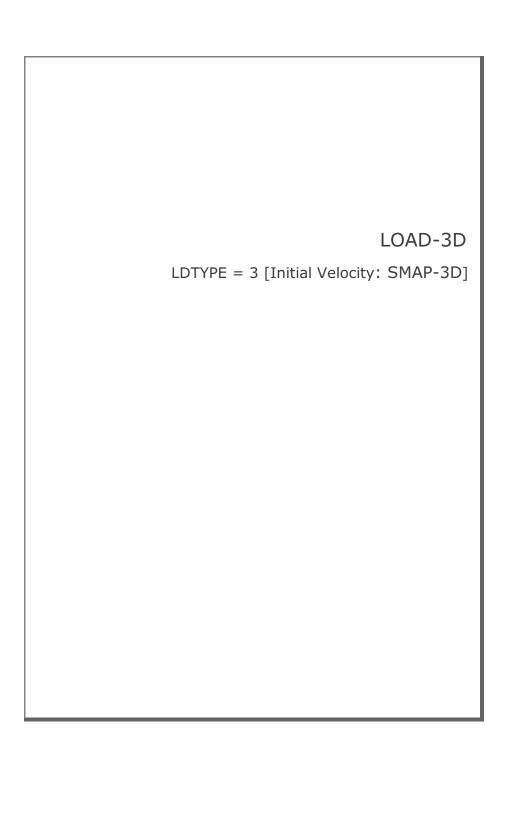
Card Group		Input Data and Definitions (Pressure)	
Title	TIT	LE TITLE Any title (Max = 60 characters)	
2	NUI	MLS NUMLS Number of loading surfaces where external tractions are specified (Max = 20)	
Loading Surface	For Each Loading Surface	LSNO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Polygon = 2 Plane = 3 Line strip = 4 Points = 5 Node group = 6 Element group 2.2.2 NUMNODE NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990) N 2.2.3	
	For	NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node Polygon (LSTYPE=1) is defined counterclockwise. Plane (LSTYPE=2) is defined by 3 nodes. For LSTYPE=3 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.	

Card Group			Input Data and Definitions (Pressure)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 5 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NODE ICR
		LSTYPE = 6 (Element Group)	NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface number (See Mesh File Card 3.2) Example NSR = 5 NJR = 5 NJR = 5 NJR = 4 ICR = 30 NIR = 3

Card Group		Input Data and Definitions (Pressure)	
	For Each Pressure Function		
	For E	For E	3.2.4 a _{zo} , a _{zx} , a _{zy} , a _{zz}
		3.2.5 $a_{no},\ a_{nx},\ a_{ny},\ a_{nz}$ a_{ni} Coefficients defining surface traction normal to surface. Acting on actual surface $P_n = a_{no} + a_{nx}x + a_{ny}y + a_{nz}z$	

Card		Input Data and Definitions (Pressure)
Pressure History	For Each Pressure History	
	For	

LOAD-3D LDTYPE = 2 [Velocity: SMAP-3D]

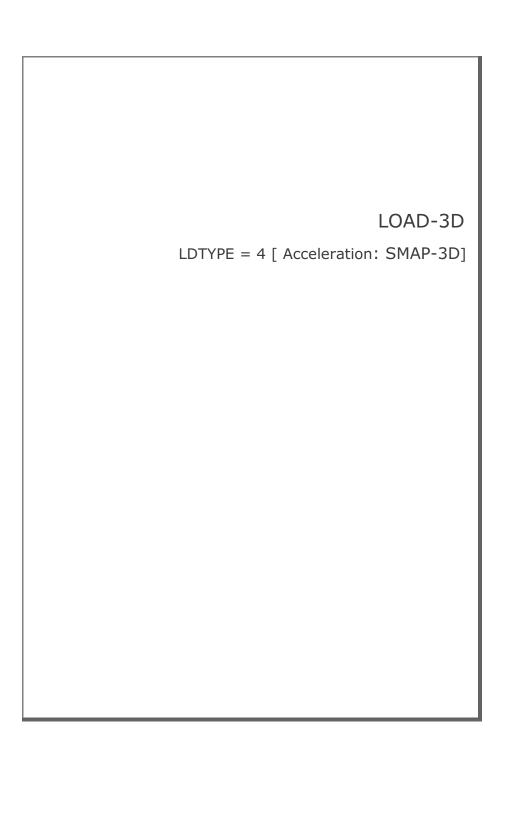

Card Group		Input Data and Definitions (Velocity)	
Title	TIT	LE TITLE Any title (Max = 60 characters)	
2	NUI	NUMLS Number of loading surfaces where velocities are specified (Max = 20)	
Loading Surface	Surface	LSNO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Polygon = 2 Plane = 3 Line strip = 4 Points = 5 Node group = 6 Element group	
רל	For Each Loading Surface	NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990) 2.2.3 NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node Polygon (LSTYPE=1) is defined counterclockwise. Plane (LSTYPE=2) is defined by 3 nodes. For LSTYPE=3 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.	

Card Group			Input Data and Definitions (Velocity)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 5 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NODE ICR
		LSTYPE = 6 (Element Group)	NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface no. (See Mesh File Card 3.2) Example NSR = 5 NJR = 5 NJR = 5 NJR = 4 ICR = 30 NIR = 3

Card Group	Input Data and Definitions (Velocity)			
3	3.1 NUI	MLV NUMLV Number of velocity functions (Max = 20)		
	3.2	LVNO, LVTYPE LVNO Velocity function number LVTYPE = 0 Apply individual components Cards 3.2.2 - 3.2.4 = 1 Apply normal components Cards 3.2.5		
Velocity Function	Function	a_{xo} , a_{xx} , a_{xy} , a_{xz} a_{xi} Coefficients defining velocity in x-direction $V_x = a_{xo} + a_{xx}x + a_{xy}y + a_{xz}z$		
Veloci	For Each Velocity Function	a_{yo} , a_{yx} , a_{yy} , a_{yz} a_{yi} Coefficients defining velocity in y-direction $V_{y} = a_{yo} + a_{yx}x + a_{yy}y + a_{yz}z$		
	Fo	a_{zo} , a_{zx} , a_{zy} , a_{zz} a_{zi} Coefficients defining velocity in z-direction $V_z = a_{zo} + a_{zx}x + a_{zy}y + a_{zz}z$		
		a_{no} , a_{nx} , a_{ny} , a_{nz} a_{ni} Coefficients defining velocity normal to surface $V_n = a_{no} + a_{nx}x + a_{ny}y + a_{nz}z$		

Card Group	Input Data and Definitions (Velocity)				
4	4.1 NUN	NUMLH Number of velocity histories (Max = 20)			
	7.2	LHNO Velocity history number			
ory		NUMTP Number of time points (Max = 1000)			
Velocity Histo	city History	$T_1, T_2,, T_{NUMTP}$ T_i Specified time			
Velocity History	For Each Velocity History	4.2.4 C ₁ , C ₂ ,, C _{NUMTP} C _i Velocity intensity at time T _i			

Card Group	Input Data and Definitions (Velocity)
5	5.1
	LSNO, LVNO, LHNO
	LSNO Loading surface number
	LVNO Velocity function number
	LHNO Velocity history number
	, ,
	Repeat Card 5.1 until the last card (LSNO=0) is specified
atio	
Velocity Specification	
Spe	
city	
eloc	
>	

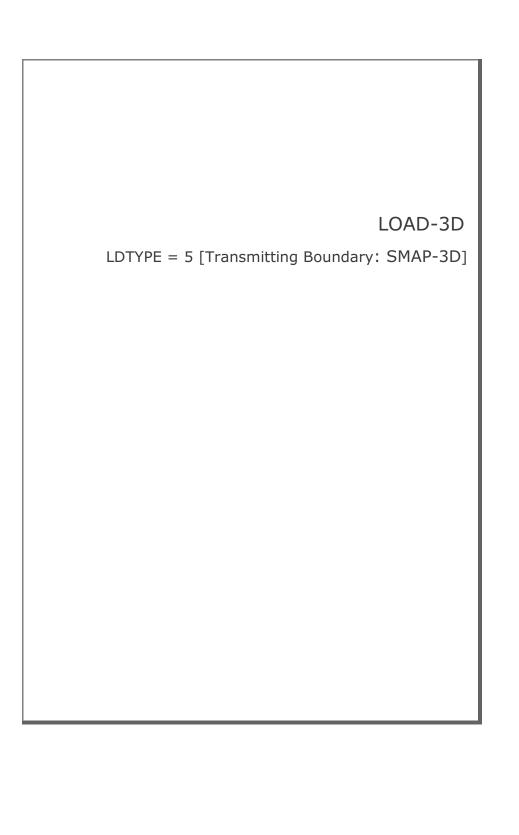


Card Group		Input Data and Definitions (Initial Velocity)			
Title	TIT	TITLE TITLE Any title (Max = 60 characters)			
2	NUI	NUMLS Number of loading surfaces where in velocities are specified (Max = 20)	itial		
Loading Surface	For Each Loading Surface	LSNO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Polygon = 2 Plant = 3 Line strip = 4 Point = 5 Node group = 6 Element group 2.2.2 NUMNODE NUMNODE Number of nodes on the strip is a point in	nts		
	For Each L	loading surface (Max = loading surface (Max = loading surface) 2.2.3 NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node Polygon (LSTYPE=1) is defined counterclock Plane (LSTYPE=2) is defined by 3 nodes. For LSTYPE=3 and NOD _{NUMNODE} < 0, absolute va of NOD _{NUMNODE} is the reference node defining normal to the Line strip.	e 9990) kwise.		

Card Group			Input Data and Definitions (Initial Velocity)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 5 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows 5
		LSTYPE = 6 (Element Group)	NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface no. (See Mesh File Card 3.2) Example NSR = 5 NSR = 5 NJR = 4 ICR = 30 NIR = 30 NIR = 3

Card Group	Input Data and Definitions (Initial Velocity)
3	NUMLIV NUMLIV Number of initial velocity functions (Max = 20)
Initial Velocity Function	Jacob Parameters Single Parameters Single Parameters LIVNO, LIVTYPE LIVNO Initial velocity function number LIVTYPE Elivno Initial velocity function number LIVTYPE Elivno Initial velocity function number LIVTYPE Elivno Initial velocity individual components Cards 3.2.2 - 3.2.4 = 1 Apply normal components Cards 3.2.5 3.2.2 a _{xo} , a _{xx} , a _{xy} , a _{xz} a _{xi} Coefficients defining initial velocity in the x-direction. V _{ix} = a _{xo} + a _{xx} x + a _{xy} y + a _{xz} z 3.2.3 a _{yo} , a _{yx} , a _{yy} , a _{yz} a _{yi} Coefficients defining initial velocity in the x-direction V _{iy} = a _{yo} + a _{yx} x + a _{yy} y + a _{yz} z 3.2.4 a _{zo} , a _{zx} , a _{zy} , a _{zz} a _{zi} Coefficients defining initial velocity in the x-direction Coefficients defining initial velocity in the x-direction Coefficients defining initial velocity in the x-direction
	$V_{iy} = a_{yo} + a_{yx} x + a_{yy} y + a_{yz} z$ $3.2.4$ $a_{zo}, a_{zx}, a_{zy}, a_{zz}$ a_{zi} Coefficients defining initial velocity in the z-direction. $V_{iz} = a_{zo} + a_{zx} x + a_{zy} y + a_{zz} z$ $3.2.5$ $a_{no}, a_{nx}, a_{ny}, a_{nz}$ a_{ni} Coefficients defining initial velocity normal to the surface. $V_{in} = a_{no} + a_{nx} x + a_{ny} y + a_{nz} z$

Card Group	Input Data and Definitions (Initial Velocity)
4	4.1
	LSNO, LIVNO
	LSNO Loading surface number
	LIVNO Initial velocity function
Initial Velocity Specification	Repeat Card 4.1 until the last card (LSNO=0) is specified


Card Group		Input Data and Definitions (Acceleration)			
Title	TIT	TITLE TITLE Any title (Max = 60 characters)			
2	NUI	NUMLS Number of loading surfaces where accelerations are specified (Max = 20)			
Loading Surface	For Each Loading Surface	LSNO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Polygon = 2 Plane = 3 Line strip = 4 Points = 5 Node group = 6 Element group 2.2.2 NUMNODE NUMNODE NUMNODE Number of nodes on this loading surface (Max = 9990) NOD1, NOD2,, NODNUMNODE NOD1 Specified node			
		Polygon (LSTYPE=1) is defined counterclockwise. Plane (LSTYPE=2) is defined by 3 nodes. For LSTYPE=3 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.			

Card Group			Input Data and Definitions (Acceleration)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 5 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NODE ICR
		LSTYPE = 6 (Element Group)	NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface no. (See Mesh File Card 3.2) Example NSR = 5 NJR = 5 NJR = 5 NJR = 4 ICR = 30 NIR = 3

Card Group	Input Data and Definitions (Acceleration)				
Group 3	3.1 NUN	MLA NUMLA Number of acceleration functions (Max = 20) 3.2.1 LANO, LATYPE LANO Acceleration function number LATYPE = 0 Apply individual components (Cards 3.2.2 - 3.2.4)			
Acceleration Function	For Each Acceleration Function	$= 1 \text{ Apply normal components}$ $(Cards 3.2.5)$ $a_{xo}, a_{xx}, a_{xy}, a_{xz}$ $a_{xi} Coefficients defining acceleration$ $in the x-direction$ $A_{x} = a_{xo} + a_{xx}x + a_{xy}y + a_{xz}z$			
Accelera	For Each Acce	$a_{yo},\ a_{yx},\ a_{yy},\ a_{yz}$ $a_{yi} \qquad \text{Coefficients defining acceleration}$ $\text{in the y-direction.}$ $A_{y} = a_{yo} + a_{yx}x + a_{yy}y + a_{yz}z$ $3.2.4$ $a_{zo},\ a_{zx},\ a_{zy},\ a_{zz}$ $a_{zi} \qquad \text{Coefficients defining acceleration}$ $\text{In the z-direction.}$ $A_{z} = a_{zo} + a_{zx}x + a_{zy}y + a_{zz}z$			
		a_{no} , a_{nx} , a_{ny} , a_{nz} a_{ni} Coefficients defining acceleration normal to the surface. $A_n = a_{no} + a_{nx}x + a_{ny}y + a_{nz}z$			

Card Group		Input Data and Definitions (Acceleration)
4	4.1 NUM	ILH NUMLH Number of acceleration histories (Max = 20)
	4.1	LHNO Acceleration history number
	,	NUMTP Number of time points (Max = 1000)
Acceleration History	For Each Acceleration History	$T_1, T_2,, T_{NUMTP}$ T_i Specified time
	For Each Acce	C ₁ , C ₂ ,, C _{NUMTP} C _i Acceleration intensity at time T _i

Card Group	Input Data and Definitions (Acceleration)
5	LSNO, LANO, LHNO
	LSNO Loading surface number LANO Acceleration function number LHNO Acceleration history number Repeat Card 5.1 until the last card (LSNO=0) is specified
Acceleration Specification	Repeat Card 5.1 until the last card (LSNO=U) is specified

Card Group	Input Data and Definitions (Transmitting Boundary)		
Title	TITLE TITLE Any title (Max = 60 characters)		
2	NUI	NUMLS Number of loading surfaces where transmitting boundaries are specified (Max = 20)	
Loading Surface	rface Tace	LSNO, LSTYPE LSNO Loading surface number LSTYPE = 0 All specified nodes = 1 Polygon = 2 Plane = 3 Line strip = 4 Points = 5 Node group = 6 Element group	
Loac	For Each Loading Surface	NUMNODE Number of nodes on this loading surface (Max = 9990) 2.2.3 NOD ₁ , NOD ₂ ,, NOD _{NUMNODE} NOD _i Specified node Polygon (LSTYPE=1) is defined counterclockwise. Plane (LSTYPE=2) is defined by 3 nodes. For LSTYPE=3 and NOD _{NUMNODE} < 0, absolute value of NOD _{NUMNODE} is the reference node defining normal to the Line strip.	

Card Group		In	put Data and Definitions (Transmitting Boundary)
2	2.2		NUMNODG NUMNODG Number of node groups on this loading surface (Max = 100)
Loading Surface	For Each Loading Surface	LSTYPE = 5 (Node Group)	NSR, JCR, NJR, ICR, NIR For Each Group NSR Starting node number of the first row JCR Node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number increment in a row NJR Number of nodes in a row ICR Node number increment for next row NIR Total number of rows Starting node number of the first row ICR NODE ICR
		LSTYPE = 6 (Element Group)	NUMNELG NUMNELG NUMNELG Number of element groups on this loading surface (Max = 100) 2.2.7 NSR, JCR, NJR, ICR, NIR, NS For Each Group NSR Starting element number of the first row JCR Element number increment in a row NJR Number of elements in a row ICR Element number increment for next row NIR Total number of rows NS Element surface no. (See Mesh File Card 3.2) Example NSR = 5 JCR = 5 NJR = 4 ICR = 30 NIR = 30 NIR = 3

Card Group	Input Data and Definitions (Transmitting Boundary)		
3		MMP Number of different material property (Max = 20)	
	3.2	MATNO MATNO Material property number	
Material Property	For Each Material Property	RO, E, V RO Mass density E Young's modulus V Poisson's ratio	

Cand	Total Data and Data War (T. 1991 D. 1991
Card Group	Input Data and Definitions (Transmitting Boundary)
4	LSNO, MATNO
	LSNO Loading surface number MATNO Material property number
	Repeat Card 4.1 until the last card (LSNO=0) is specified
Transmitting Boundary Specification	

XY Graph User's Manual

12.1 Introduction

XY Graph is a two-dimensional graph consisting of lines connecting each pair of data points, which can be plotted by PLOT XY or EXCEL. Figure 12.1 shows schematic flow diagram of plotting simple form of Draft XY data in Table 12.1.

This Draft XY is changed into Standard XY by Converter DS.

Then Standard XY can be plotted by directly PLOT XY or by EXCEL with the aid of Converter SE.

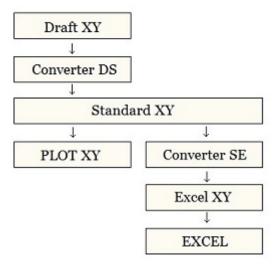


Figure 12.1 Flow diagram of plotting XY graph

Table 12.1 Draft XY Data Format

Card		Input Data and Definitions						
First Plot	Title	Title (Max 50 Characters) Sub Title (Max 50 Characters) X-Label (Max 50 Characters) Y-Label (Max 50 Characters)						
	First Curve	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	Second Curve	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	Last Curve	X_1 Y_1 X_2 Y_2 X_n Y_n 0.0 123456 (End of Curve) Legend 1 (Max 20 Characters) Legend 2 (Max 20 Characters) 0.0 987654 (End of Plot)						
Next Plot		Next Plot can be added using the same format as the First Plot						

12.2 New Graph

XY Graph can be created by performing the following steps:

Step 1:

Select the following menu items in SMAP:

 $Plot \rightarrow XY \rightarrow PLOT XY \rightarrow New$

Step 2:

Once selected, initial default file XY.dat will be opened by Notepad as listed in Table 12.2.

Edit this default file according to the format of Draft XY Data in Table 12.1. And then save and exit.

Step 3:

Draft XY.dat is automatically changed into Standard Form by Converter DS as listed in Table 12.3.

Modified graph will be displayed on PLOT XY drawing board.

Step 4:

XY Graph can be further modified by Edit Dialog explained in detail in the next Section 12.3.

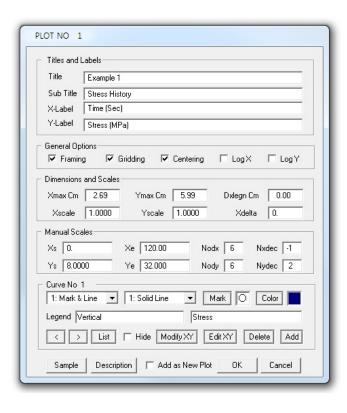
Table 12.2 Draft XY Data (Initial Default File XY.dat)

```
Plot No. 1
Sub Title 1
XLabel-1
YLabel-1
0 10
100 20
.000000E+00 .123456E+06
Curve 1
Legend
10, 20
90, 30
.000000E+00 .123456E+06
Curve 2
Legend
.000000E+00 .987654E+06
Plot No. 2
Sub Title 2
XLabel-2
YLabel-2
0 100
1000 200
.000000E+00 .123456E+06
Curve 1
Legend
100 200
     300
900
.000000E+00 .123456E+06
Curve 2
Legend
.000000E+00 .987654E+06
Plot No. 3
Sub Title 3
XLabel-3
YLabel-3
0 100
1000 200
.000000E+00 .123456E+06
Curve 1
Legend
200, 200
900, 300
.000000E+00 .123456E+06
Curve 2
Legend
.000000E+00 .987654E+06
```

Table 12.3 Standard XY Data (Initial Default File XY.dat)

```
************
                                       PLOT NO:
C Following data can be modified for plotting configuration
  TITLE (50 CHAR) = Plot No. 1
SUB-TITLE (50 CHAR) = Sub Title 1
XLABLE (50 CHAR) = XLabel-1
YLABLE (50 CHAR) = YLabel-1
  MAN.-SCALE: IXY = 1
LEGEND-OPT.: ILG = 1
TOTAL CURVE: NLG = 2
 LEGEND-LEN : DXLEGN = 0.0
C TELEM= 0: no list data, list X-label & X-tick number
C 1: list data, list X-label & X-tick number
C -2: node data, list node numbers only
C 2: element data, list element numbers only
C -3: node data, list node no, X-tick no. & X-label
C 3: element data, list elem no, X-tick no. & X-label
  FRAMING :
 CENTERING : ICENL = 1
  GRIDDING :
                     IGRID = 1
C X-coordinate data
                       XMAX = 5.0
                       NODX = 6
                     XS = .000000E+00
XE = .120000E+03
NXDEC =-1
                    XSCALE = 1.0
С
                      IGENX = 0
                    XDELTA = 0.0
                       LOGX = 0
                        NXD = 0
C Y-coordinate data
                       YMAX = 5.0
                       NODY = 6
                    YS = .800000E+01
YE = .320000E+02
NYDEC = 2
YSCALE = 1.0
C
                       LOGY = 0
                       NYD = 0
C Individual Curve
                                                 4
                      NO: 1
HIDE = 0
LINE = 1
DASH = 1
MARK = 1
COLR = 1
                                                                                 9 10
                                        0
                                              0
                                                          0
                                                                0
                                                                     0
                                                                           0
                                                                                 0
                                                                                      0
                                                    4
                                                          5
5
                                                                6
                                                                           8
                                                                                 9
                                                                                    10
                                                                     7
                                                   4
                                                                6
                                                                           8
                                                                                 9 10
.000000E+00
                      .100000E+02
                      .200000E+02
   .100000E+03
   .000000E+00
                      .123456E+06
Curve 1
Legend
   .100000E+02
                      .200000E+02
                      .300000E+02
   .900000E+02
   .000000E+00
                      .123456E+06
Curve 2
Legend
   .000000E+00
                     .987654E+06
```

12.3 Edit Dialog


Edit Dialog in Figure 12.2 can be accessed by selecting the Edit menu in PLOT-XY.

Edit Dialog consists of following six parts:

- Titles and Labels
- General Options
- · Dimensions and Scales
- Manual Scales
- Curve Data
- · Command Buttons & Check Box

Refer to description in Sample Graph in Figure 12.3.

Figure 12.2 Edit dialog

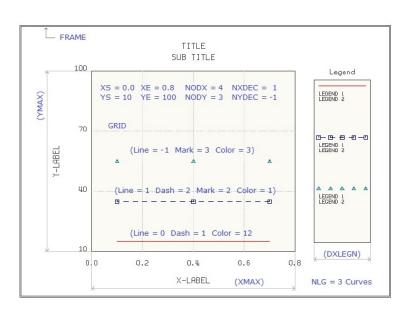


Figure 12.3 Sample graph

12.3.1 Titles and Labels

Here, you type:

Title, Sub Title, X-Label, and Y-Label.

12.3.2 General Options

Check the box for the option item to be active:

Framing Draw Frame
Gridding Draw Grid lines

Center Titles and X & Y Labels

Log X Log scale in X axis Log Y Log scale in Y axis

12.3.3 Dimensions and Scales

Refer to description in Sample Graph in Figure 12.3.

12.3.4 Manual Scales

Refer to description in Sample Graph in Figure 12.3.

12.3.5 Curve Data

For each curve, you can select Line type, Dash type, Mark type, Color as in Figure 12.4, and type in Legends.

Check Hide Curve to hide the current curve.

Figure 12.4 Curve options

Curve Data has the following seven command buttons: Back Open previous curve Next Open next curve List List all curves as in Figure 12.5a Modify current curve XY data as in Figure 12.5b Modify XY Edit XY Edit current curve XY data Delete Delete current curve Add Add new curve to current plot Listing of Curves Listing No Hide Line Dash Mark Color Legend 1 Legend 2 Stress Vertical 1 2 2 2 Horizontal Stress Description OK Cancel Figure 12.5a Listing of curves Modify XY Data Modify: Xmin Xmax 100.00 Xadd 0. Yadd 0. Xmult 1.0000 Ymul 1.0000 For X >= Xmin and X <= XmaxNew $X = (X + Xadd) \times Xmult$ New Y = (Y + Yadd) * Ymult

Figure 12.5b Modify current curve XY data

Cancel

OK

12.3.6 Command Buttons & Check Box

Sample Show Sample graph in Figure 12.3 Description Show Curve options in Figure 12.4 Add as New Plot Copy Current plot and Add as New plot

OK Save and exit Edit dialog Cancel Cancel and exit Edit dialog

12.4 Existing Graph

XY Graph can be opened by performing the following steps:

Step 1:

Select the following menu items in SMAP:

 $Plot \rightarrow XY \rightarrow PLOT XY \rightarrow Open$

Step 2:

If input file is Draft Form, then it will be automatically changed into Standard Form by Converter DS as listed in Table 12.3. XY Graph will be displayed on PLOT XY drawing board.

Step 3:

XY Graph can be modified by Edit Dialog as explained in detail in the previous Section 12.3.

Refer to samples in the following directory:

C:\Smap \Smap3D \Example \XY_Graph \PLOT XY Graph Sample.docx

12.5 Excel XY Graph

Excel XY Graph can be made by performing the following steps:

Step 1:

Select the following menu items in SMAP:

 $\mathsf{Plot} \to \mathsf{XY} \to \mathsf{EXCEL} \to \mathsf{Open}$

Step 2:

If input file is Draft Form, then it will be automatically changed into Standard Form by Converter DS as listed in Table 12.3.

Then this Standard XY Graph will be changed into Excel Form by Converter SE and displayed on EXCEL Spreadsheet as shown in Figure 12.6.

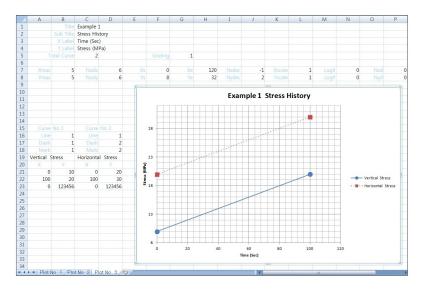


Figure 12.6 XY graph on Excel spread sheet

Notes on Excel XY Graph

Excel XY Graph can be influenced by the following input parameters in Standard Form:

Note 1: Input Parameters Not Considered

Following parameters are not considered:

Plot dimensions: XMAX, YMAX

Number of digits after decimal point: NXDEC, NYDEC

Note 2: Automatic Scaling (Xscale = 0, Yscale = 0)

For XSCALE = 0

X axis is automatically scaled and XS, XE and NODX are not used.

For YSCALE = 0

Y axis is automatically scaled and YS, YE and NODY are not used.

Note 3: Logarithmic Scaling (Logx = 1, Logy = 1)

For LOGX = 1

NODX and NXD are not used.

If XSCALE \neq 0 and XS < 1 and XE > 1, XS is automatically scaled.

For LOGY = 1

NODY and NYD are not used.

If YSCALE \neq 0 and YS < 1 and YE > 1, YS is automatically scaled.

Refer to samples in the following directory:

C:\Smap \Smap3D \Example \XY_Graph \Excel XY Graph Sample.pdf

12.6 SMAP Results

Figure 12.7 shows schematic flow diagram of processing SMAP Results corresponding to Card Group 12 in SMAP Post File.

This Standard Form of PlotXy.dat can be opened by either PLOT XY or EXCEL spreadsheet.

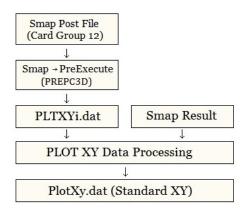


Figure 12.7 Processing SMAP results

SMAP Results can be plotted by performing following steps:

Step 1:

Select the following menu items in SMAP:

Plot → Result

Step 2:

Select PLOT XY in Plot Menu dialog in Figure 12.8.

Figure 12.8 Plot menu dialog

12.6.1 PLOT XY Setup

PLOT XY Setup in Figure 12.9 can be accessed by selecting the following item in SMAP main menu.

Setup → PLOT XY

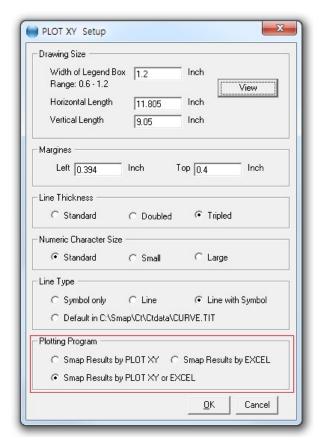


Figure 12.9 PLOT XY setup dialog

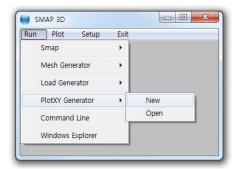
Refer to description in Sample Graph in Figure 12.4.

12.7 PlotXY Generator

PlotXY Generator is the graphical user interface which is mainly used to generate or edit Simplified Time History and Simplified Snapshot of Card Group 12 in SMAP Post File.

All different cases will be discussed in the following sections.

12.7.1 Accessing PlotXY Generator


PlotXY Generator can be accessed by selecting the following item in SMAP main menu as in Figure 12.10.

Run → PlotXY Generator → New / Open

New is used to generate new Post File.

You can edit sample input with all different cases.

Figure 12.10 Menu for PlotXY Generator

Open is used to edit existing Post File. You can specify different output Post File name as shown in Figure 12.11.

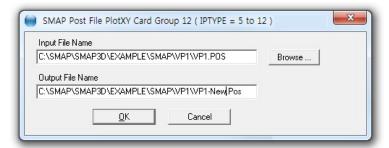


Figure 12.11 PlotXY input and output file dialog

12.7.2 Time History for a Given Element

Main Dialog for Time History of Stresses / Strains for a Given Element (IPTYPE = 5) is shown in Figure 12.12.

Element should be listed in Card 10.2.2 in SMAP Main File. Table shows available data as in Figure 12.13.

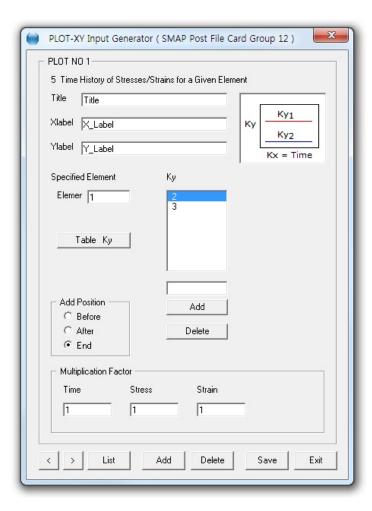


Figure 12.12 Time history for a given element

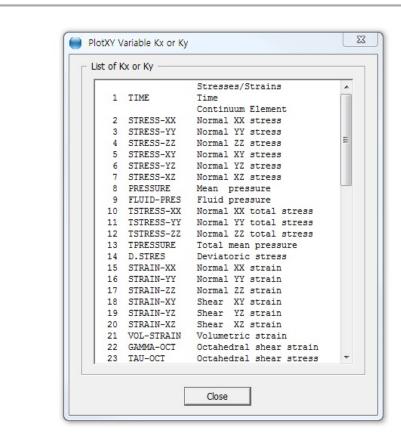


Figure 12.13 Available data for stresses / strains

Buttons at Main Dialog Bottom

Back Show previous plot Next Show next plot

List Show listing of all plots
Add Add new plot at the end
Delete Delete the current plot
Save Save all updates
Exit Save and exit

List shows summary of all plots as shown in Figure 12.14.

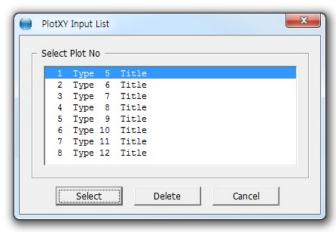


Figure 12.14 Listing of plots

Add shows new plot type to be added as in Figure 12.15.

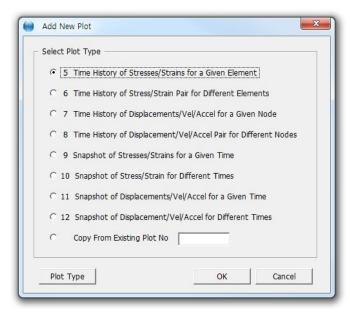


Figure 12.15 Add options for new plot

Plot Type in Add dialog illustrates graphically available plot types as shown schematically in Figure 12.16.

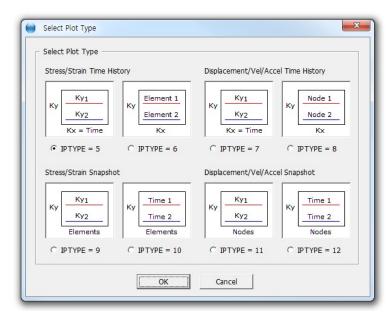


Figure 12.16 Available plot types

12.7.3 Time History for Different ElementS

Main Dialog for Time History of Stresses / Strains for Different Elements (IPTYPE = 6) is shown in Figure 12.17.

Elements should be listed in Card 10.2.2 in SMAP Main File. Table shows available data as in Figure 12.13.

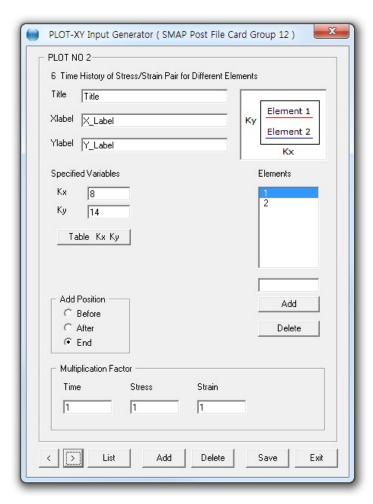


Figure 12.17 Time history for different elements

12.7.4 Time History for a Given Node

Main Dialog for Time History of Displacement / Vel / Accel for a Given Node (IPTYPE = 7) is shown in Figure 12.18.

Node should be listed in Card 10.3.2 in SMAP Main File. Table shows available data as shown in Figure 12.19.

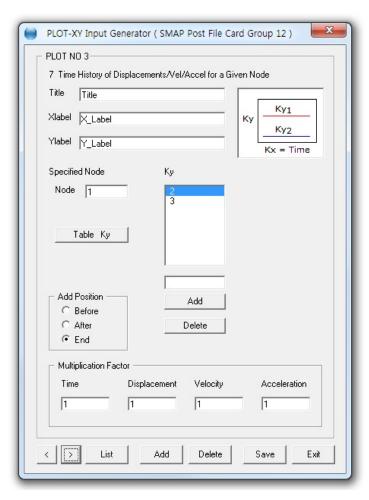
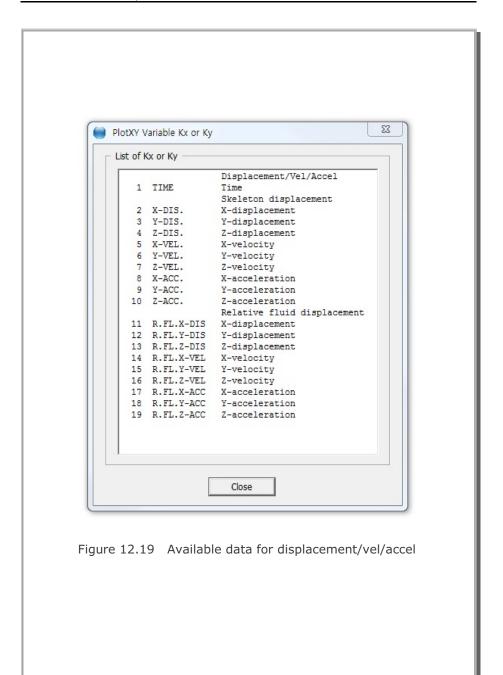



Figure 12.18 Time history for a given node

12.7.5 Time History for Different Nodes

Main Dialog for Time History of Displacement / Vel / Accel for Different Nodes (IPTYPE = 8) is shown in Figure 12.20.

Nodes should be listed in Card 10.3.2 in SMAP Main File. Table shows available data as in Figure 12.19.

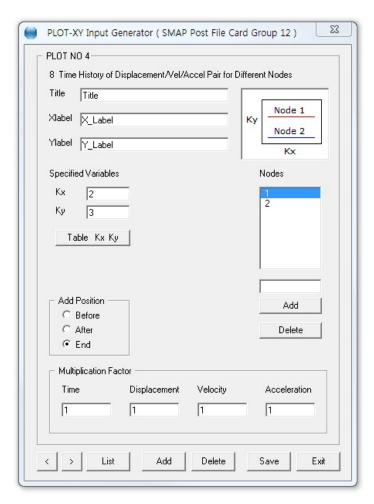


Figure 12.20 Time history for different nodes

Main Dialog for Snapshot of Stresses / Strains for a Given Time (IPTYPE = 9) is shown in Figure 12.21.

Time should be listed in Card 10.4.2 in SMAP Main File.

Table shows available data as in Figure 12.13.

Elements represent a series of data points in SMAP Mesh.

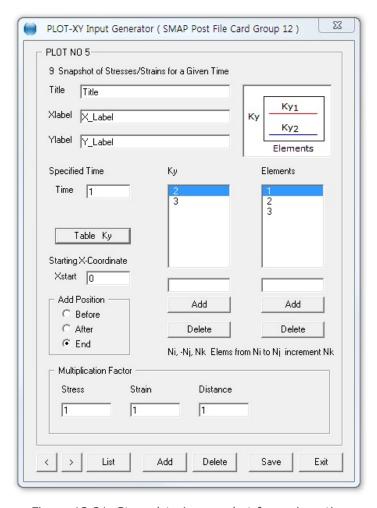


Figure 12.21 Stress/strain snapshot for a given time

12.7.7 Stress/Strain Snapshot for Different Times

Main Dialog for Snapshot of Stresses / Strains for Different Times (IPTYPE = 10) is shown in Figure 12.22.

Times should be listed in Card 10.4.2 in SMAP Main File.

Table shows available data as in Figure 12.13.

Elements represent a series of data points in SMAP Mesh.

This example will select a series of Elements (1,2,3,4,5,6,7,8,9,10).

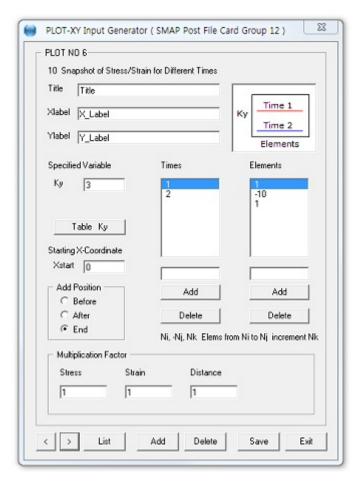


Figure 12.22 Stress/strain snapshot for different times

12.7.8 Displ/Vel/Acc Snapshot for a Given Time

Main Dialog for Snapshot of Displacement / Vel / Accel for a Given Time (IPTYPE = 11) is shown in Figure 12.23.

Time should be listed in Card 10.4.2 in SMAP Main File.

Table shows available data as in Figure 12.19.

Nodes represent a series of data points in SMAP Mesh.

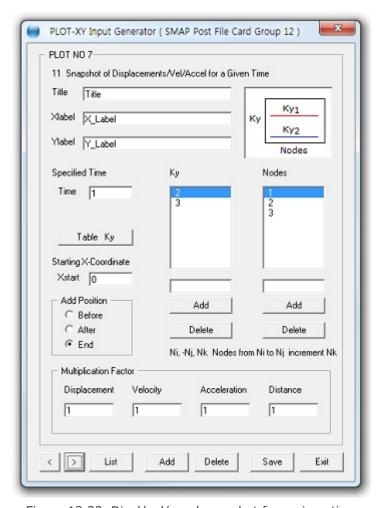


Figure 12.23 Displ/vel/accel snapshot for a given time

12.7.9 Displ/Vel/Acc Snapshot for Different Times

Main Dialog for Snapshot of Displacement / Vel / Accel for Different Times (IPTYPE = 12) is shown in Figure 12.24.

Times should be listed in Card 10.4.2 in SMAP Main File.

Table shows available data as in Figure 12.19.

Nodes represent a series of data points in SMAP Mesh.

This example will select a series of Nodes (1,2,3,11,13,15,17,19,21).

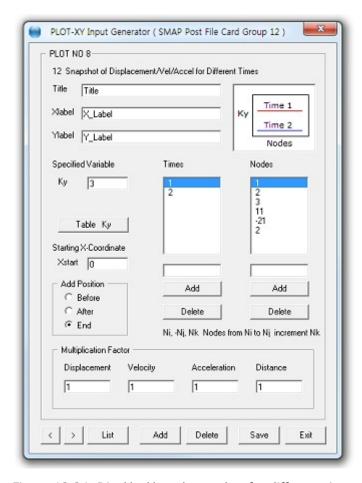


Figure 12.24 Displ/vel/accel snapshot for different times

PLOT-XY User's Manual

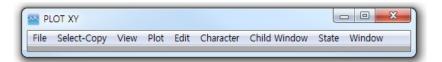
13.1 Introduction

PLOT-XY is a two-dimensional graphical program specially designed to perform scatter plotting and post processing for SMAP programs. The key features of PLOT-XY are:

Plot scatterplot data

It reads the scatterplot data in text file and plots lines connecting each pair of data points.

Plot results of analyses


It reads Card 12 of Post File and SMAP Output and plots time histories of stress/strain/displacement/temperature and snap shots of stress/strain/displacement/temperature vs. distance.

Edit XY graph

It reads XY data, edits titles and scales, adds user-defined additional curves.

PLOT-XY has two menu styles, General and Express.

General Style includes 9 menus consisting of all menu items available. For General Style, specify 1 in C:\Smap\Ct\Ctdata\MenuStyle_XY.dat

Express Style includes 12 menus which are rearranged so as to quickly access most frequently used menu items in practice. For Express Style, specify 0 in C:\Smap\Ct\Ctdata\MenuStyle_XY.dat

13.2 Menus

File has three sub menus.

Print is to get the hard copy of the current view.

Save is to save the current view.

Exit is to exit PLOT-XY.

Select-Copy is mainly used to select and then copy the current view.

View is mainly used to select

Drawing View Size:

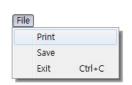
Default Size, 30%, 50%, or 100%

Increase Frame Outline:

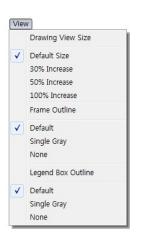
Default, Single Gray, or None

Legend Box Outline:

Default, Single Gray, or None

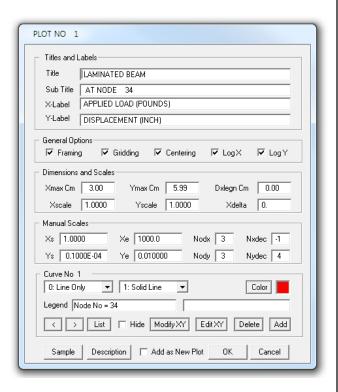

Plot has the following five sub menus.

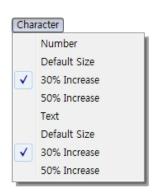
Replot is to replot the currently focused child window. Zoom is to zoom the currently focused child window. Once this sub menu is selected, you can specify the rectangular zoom area by left mouse button down at the left top corner and then left mouse button up at the right bottom corner.


Hardcopy is to print the currently focused window.

Next is to plot the next graph.

Stop is to stop plotting.





Edit opens following dialog to edit XY graph data.

It is described in detail in Section 12.3 in XY graph User's Manual.

Character is used to change sizes of number and text fonts. Default sizes are specified in PLOT-XY setup menu.

Child-Window is used to create, overlay, or close child window. A maximum of 40 child windows can be opened.

Child-Window

Child Window Create Child Window Overlay Child Window Close

PLOT-2D User's Manual

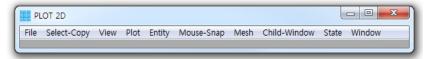
14.1 Introduction

PLOT-2D is a two-dimensional graphical program specially designed to perform pre and post processing for SMAP programs. The key features of PLOT-2D are:

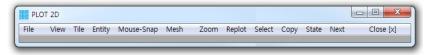
Plot finite element meshes

It reads the Mesh File and plots meshes along with node, element, boundary code, and material numbers.

Plot results of analyses

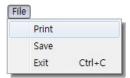

It reads Mesh File, Card 11 of Post File, SMAP Output Files and plots contours of continuum stress/strain/temperature, beam section forces, truss axial force/stress/strain, principal stress vectors, and deformed shapes.

Edit finite element or group meshes


It reads finite element or group mesh files and edit these meshes.

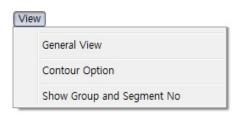
PLOT-2D has two menu styles, General and Express.

General Style includes 11 menus consisting of all menu items available. For General Style, specify 1 in C:\Smap\Ct\Ctdata\MenuStyle_2D.dat

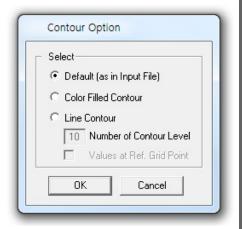

Express Style includes 13 menus which are rearranged so as to quickly access most frequently used menu items in practice. For Express Style, specify 0 in C:\Smap\Ct\Ctdata\MenuStyle_2D.dat

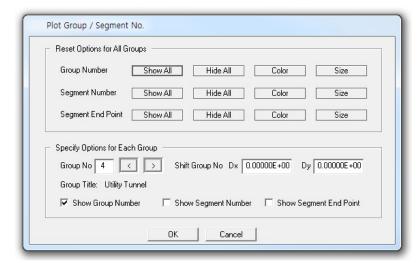
14.2 Menus

File has three sub menus.


Print is to get the hard copy of the current view. Save is to save the current mesh file. Exit is to exit PLOT-2D.


Select-Copy is mainly used to select and then copy the current view.


View has three sub menus; General View, Contour Option, and Show Group and Segment No.


General View options affect all types of plots.

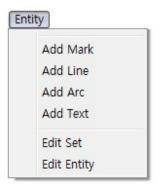
Contour Options affect contour plots of continuum element data for analysis results.

Show Group and Segment No is to show group and segment numbers when editing group meshes. It is described in detail in Section 5.3 in Group Mesh User's Manual.

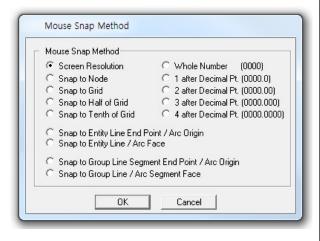
Plot has the following five sub menus.

Replot is to replot the currently focused child window. Zoom is to zoom the currently focused child window.

It zooms only mesh. Once this sub menu is selected, you can specify the rectangular zoom area by left mouse button down at the left top corner and then left mouse button up at the right bottom corner.

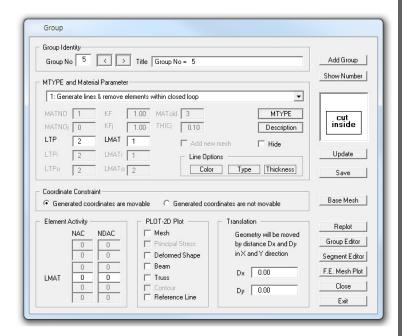

Hardcopy is to print the currently focused window.

Next is to plot the next graph.


Stop is to stop plotting.

Entity is the graphical object which is mainly used to assist editing geometry of groups and elements. It has following six sub menus; Add Mark, Add Line, Add Arc, Add Text, Edit Set, and Edit Entity. It is described in detail in Section 5.7 in Group Mesh User's Manual.

Mouse-Snap is to control the position of mouse cursor when you work for finite element mesh, group mesh, or entities. Mouse Snap Method helps you place the mouse cursor more accurately.


Mesh is used to directly modify finite element meshes. It has three sub menus; Nodal Boundary, Nodal Coordinate, and Element Material.

It is described in detail in Section 5.6 in Group Mesh User's Manual.

Nodal Boundary
Nodal Coordinate
Element Material

Group is used to build or edit group mesh.

It is described in detail in Section 5.3 in Group Mesh User's Manual.

Child-Window is used to create, overlay, or close child window. A maximum of 40 child windows can be opened.

Child-Window

Child Window Create Child Window Overlay Child Window Close

PLOT-3D **User's Manual**

15.1 Introduction

PLOT-3D is a three-dimensional graphical program specially designed to perform pre and post processing for SMAP programs. The key features of PLOT-3D are:

Plot finite element meshes

It reads the Mesh File and plots meshes along with node, element, boundary code, and material numbers.


Plot results of analyses automatically

It reads Mesh File and SMAP Output Files and with no input for Post File, plots contours of stress/strain/displacement, iso surface, principal stress vectors, load vectors and deformed shapes.

Compute intersections of surfaces

It reads the Mesh File containing shell elements for 3D surfaces and shows the locations of the computed intersections. The computed coordinates of intersections are saved in a file "Intersection.dat" which can be used for the construction of complicated 3D meshes.

PLOT-3D has 5 menus; File, Model, Plot, View and Help along with 25 toolbars.

15.2 Menus

File has six sub menus.

New is used to build Finite Element Mesh or Block Mesh.

Open is used to open existing mesh file.

Print is to get the hard copy of the current view.

Save is to save the current mesh file or current view.

Save As is to save the current mesh file as another name.

Exit is to exit PLOT-3D.

Model is mainly used to edit Finite Element or Block Mesh file. For detailed description, refer to Block Mesh User's Manual in Section 6.

For editing Finite Element Mesh,

6 menus are shown.

New is to build new mesh file.

Open is to open existing mesh file.

Edit Element is to edit parameters

related to element.

Edit Node is to edit parameters related to node.

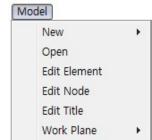
Edit Title is to edit title.

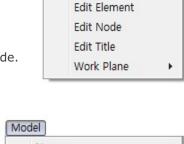
Work Plane is to show prebuilt work planes.

For editing Block Mesh,

6 menus are shown.

New is to build new mesh file.


Open is to open existing mesh file.

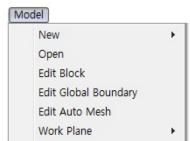

Edit Block is to edit parameters related to block.

Edit Global Boundary is to edit parameters related to boundary.

Edit Auto Mesh is to edit parameters related to auto mesh.

Work Plane is to show prebuilt work planes.

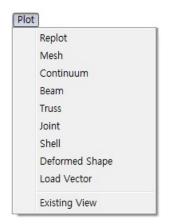
File

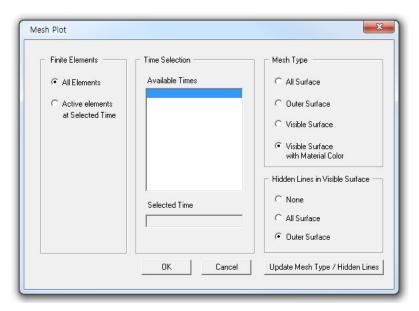

New

Open

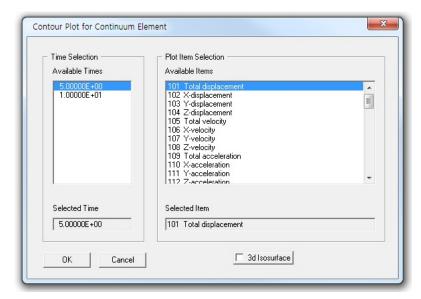
Print

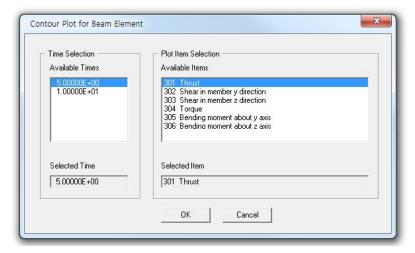
Save

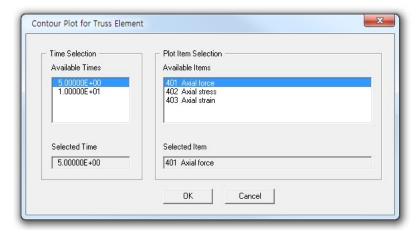

Save As Exit

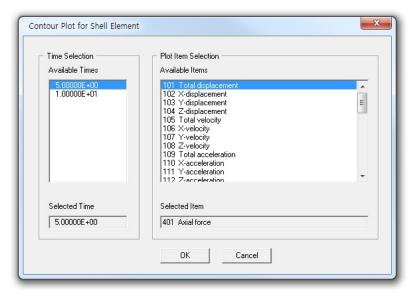

Plot is mainly used to plot Finite Element mesh and analysis results.

It has 10 sub menus; Replot, Mesh, Continuum, Beam, Truss, Joint, Shell, Deformed Shape, Load Vector, Existing View. Joint plot is not available.

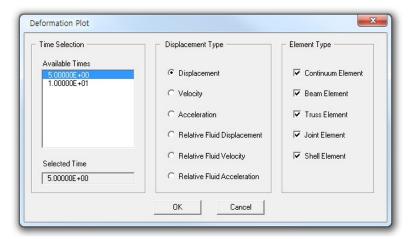

Replot is mainly used to refresh the current view.


Mesh is to plot Finite Element meshes (Default plot type). Mesh plot requires only Mesh File.

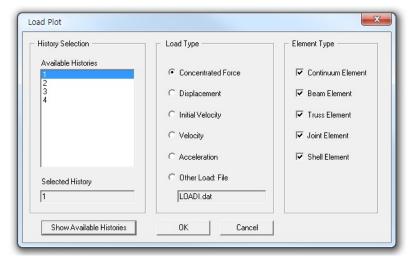

Continuum is to plot contours or principal stress vectors for continuum elements. By checking "3d Isosurface", iso surface will be shown.


Beam is to plot section forces of beam elements.

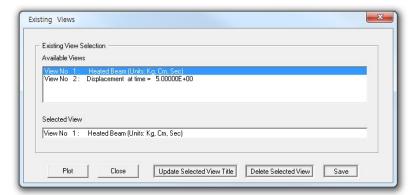
Truss is to plot axial force/stress/strain of truss elements.



Shell is to plot contours or principal stress vectors for shell elements.

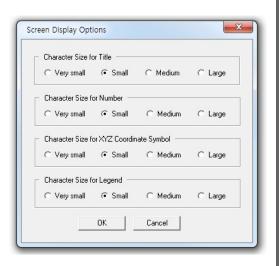


Deformed Shape is to plot the snap shot of all kinds of displacement/velocity/accelerations.

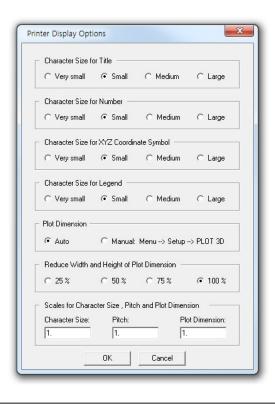

Note that deformed meshes can be combined with other plot types as discussed in "Displacement" option in view menu.

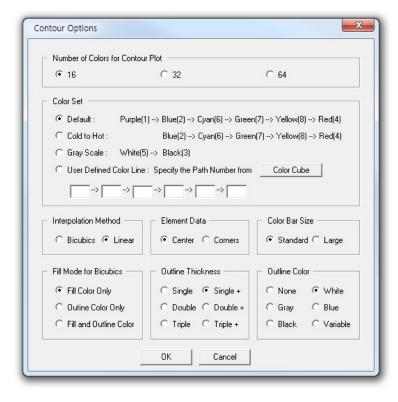
Load Vector is to plot the external loads of concentrated forces/ displacements/velocities/accelerations along with load intensity. Note that load vectors can be plotted on deformed meshes as discussed in "Load Vector" option in view menu.

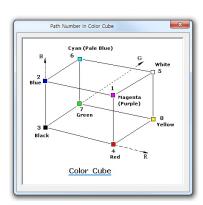
Existing View is to replot the saved views.

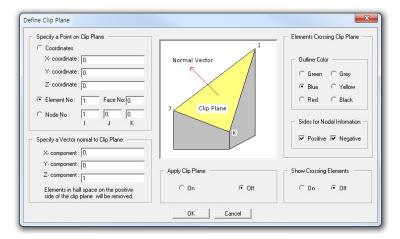

View is used to change the appearance of a selected plot.

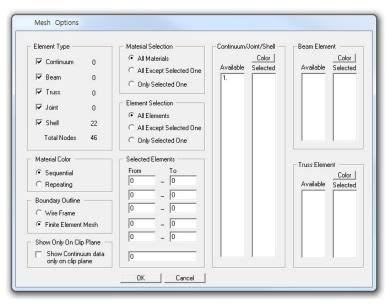
It has eleven sub menus; General, Screen, Printer, Contour, Clip Plane, Mesh, Beam, Truss, Principal Stress, Displacement, and Load Vector.

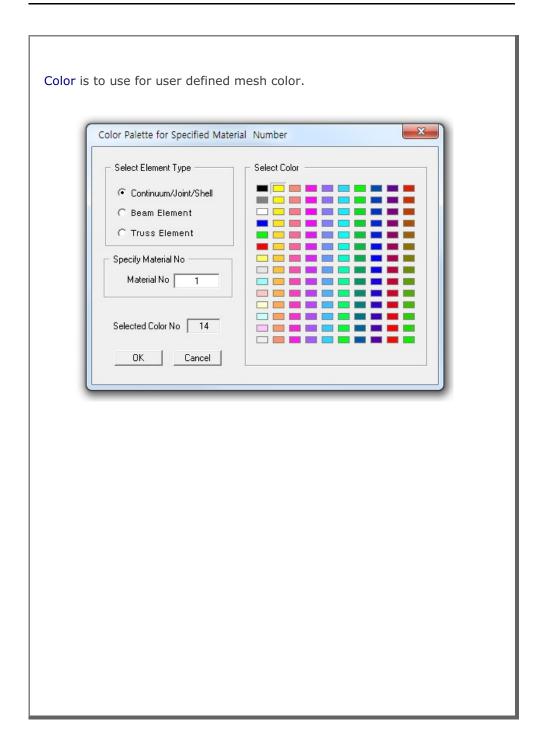



Screen display options affect character sizes shown on the monitor.

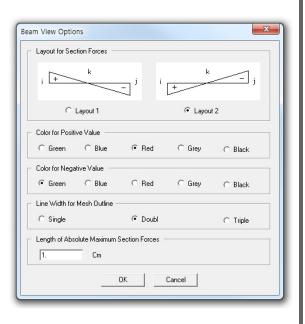

Printer display options affect character sizes and plot dimensions shown on the hard copy.


Contour options affect all types of plots involving contours.

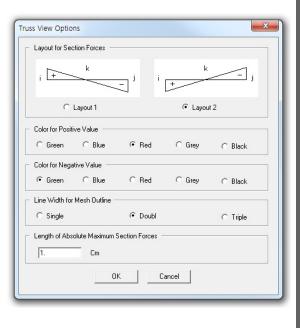

Color cube is to use for user defined color line.

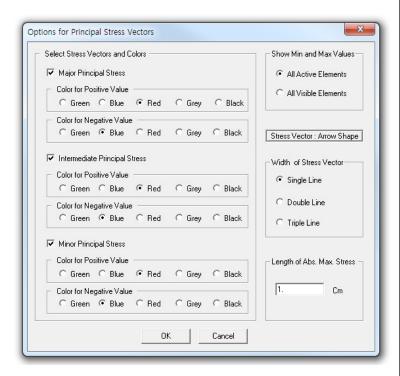


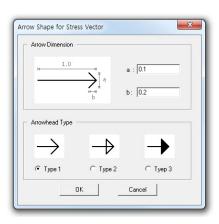
Clip plane defines parameters associated with the clip plane which cuts through the internal part of the 3D domain. When "Apply Clip Plane" is on, contours or deformed shapes are shown on such user defined plane.

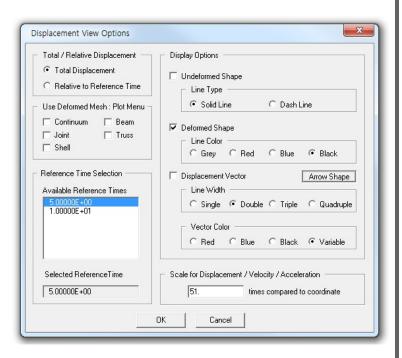


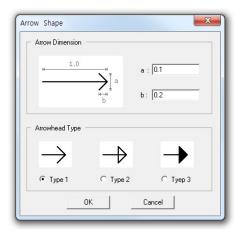
Mesh options affect all plot types. As one of useful features, it can select particular types of elements and materials.

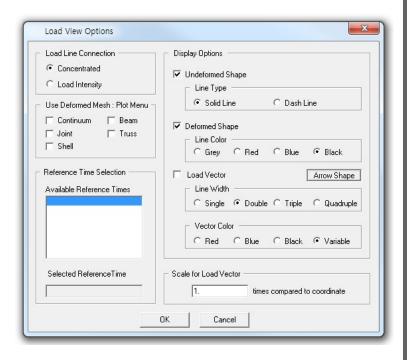


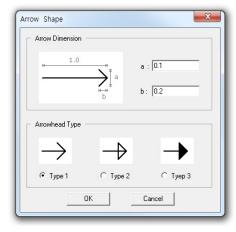

Beam view options affect only beam plot.


Truss view options affect only truss plot.


Principal Stress options affect only plots of principal stress vectors in continuum or shell elements.


Users can specify the arrow shape for stress vector.


Displacement view options affect only deformed shape plot. Continuum, Beam, Truss, and Shell plots can be displayed over deformed mesh by checking types in "Use Deformed Mesh".


Users can specify the arrow shape for displacement vector.

Load Vector view options affect only load vector plot. Load vectors can be displayed over deformed mesh by checking "Deformed Shape" in Display Options

Users can specify the arrow shape for load vector.

15.3 Toolbars

Open Toolbar

This button activates the file open dialog box to open mesh file.

Print Toolbar

This button is used to get the hard copy of current view.

Save Toolbar

This button is used to save current view or working file.

Model Toolbar

This button is used to edit finite element or block mesh.

Work Plane Toolbar

This button is to set work plane used for Model.

Layout Toolbar

These buttons are used to show different layouts.

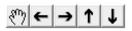
The first button divides the plot area into three parts; mesh, title, and legend. The second button divides the plot area into two parts; mesh and title.

XYZ Toolbar

This button is used to locate position of XYZ coordinate symbol in the two part layout mode. Each time you click this button, the XYZ symbol moves counterclockwise along the corners of rectangle. XYZ button is also used to control the amount of movement, rotation, and zoom.

Zoom Toolbar

The first button is used to magnify the mesh.



And the second button is used to reduce the mesh.

The third button is used to activate the selection of zoom area. Once this button is on, you can specify the rectangular zoom area by left mouse button down at the left top corner and left mouse button up at the right bottom corner. To deactivate, click the button again. The fourth button is used to switch from the currently zoomed view to the previously zoomed view or vice versa. The last button with "A" is to go back to the initial default configuration.

Translation Toolbar

The first button is to activate drag mode. Once this button is on, you can move the mesh by dragging the mouse. To deactivate, click the button again. The other buttons move the mesh to the left, right, up, and down, respectively.

Rotation Toolbar

The first button changes direction of rotation. The other three buttons rotate the mesh about X, Y, and Z axes, respectively.

Number Toolbar

The first button is to activate number mode.

Once this button is on, the selected data will be shown.

Clicking the button again will hide the selected data.

The other two buttons are used to select next and previous number, respectively. The description of selected number is listed at the bottom of PLOT-3D window.

SMAP®-3D

Structure Medium Analysis Program

3-D Static, Consolidation and Dynamic Analysis for Dry, Saturated and Partially Saturated Soils and Rock Mass

Theory

Copyright @2019 by COMTEC RESEARCH All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH. Printed in the United States of America.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
All right reserved. No part of this manual may be reproduced in any form or by any means without a written permission of COMTEC RESEARCH.	
without a written permission of COMTEC RESEARCH.	Copyright @2019 by COMTEC RESEARCH
Printed in the United States of America.	
	Printed in the United States of America.

LICENSE AGREEMENT

LICENSE: COMTEC RESEARCH grants to Licensee a non-exclusive,non-transferable right to use the enclosed Computer Program only on a single computer. The use of the Computer Program is limited to the Licensee's own project. Licensee may not use the Computer Program to serve other engineering companies or individuals without prior written permission of COMTEC RESEARCH. Licensee may not distribute copies of the Computer Program or Documentation to others. Licensee may not rent, lease, or network the Computer Program without prior written permission of COMTEC RESEARCH.

<u>TERM</u>: The License is effective as long as the Licensee complies with the terms of this Agreement. The License will be terminated if the Licensee fails to comply with any term or condition of the Agreement. Upon such termination, the Licensee must return all copies of the Computer Program, Software Security Activator and Documentation to COMTEC RESEARCH within seven days.

<u>COPYRIGHT:</u> The Licensed Computer Program and its Documentation are copyrighted. Licensee agrees to include the appropriate copyright notice on all copies and partial copies.

<u>USER SUPPORT:</u> COMTEC RESEARCH will provide the Software Support for the Registered Users for a period of 90 days from the date of purchase. User support is limited to the investigation of problems associated with the correct operation of the Licensed Computer Program. The Licensee must return the Registration Card in order to register the Licensed Computer Program.

<u>DISCLAIMER</u>: COMTEC RESEARCH has spent considerable time and efforts in checking the enclosed Computer Program. However, no warranty is made with respect to the accuracy or reliability of the Computer Program. In no event will COMTEC RESEARCH be liable for incidental or consequential damages arising from the use of the Computer Program.

<u>UPDATE POLICY:</u> Update programs will be available to the Registered Licensee for a nominal fee. The Licensee must return all the Original Distribution Diskettes and Software Security Activator to receive the update programs.

<u>GENERAL</u>: The State of California Law and the U. S. Copyright Law will govern the validity of the Agreement. This Agreement may be modified only by a written consent between the parties. COMTEC RESEARCH, 12492 Greene Ave., Los Angeles, CA 90066, U.S.A

C	ont	ents	
1.	Intr	oductio	on
	1.1	Introdu	uction
2.	Fini	te Elem	nent Formulation of Nonlinear Two-Phase Medium
	2.1	Introdu	uction
	2.2	Grain N	Model 2-2
	2.3	Pore W	ater Model
	2.4	Partiall	y Saturated Pore Water Model 2-10
	2.5	Field E	quations 2-15
	2.6	Spatial	Discretization and Incremental
		Relatio	nships of Field Variables 2-22
	2.7	Global	Equilibrium Equations 2-23
	2.8	Lineari	zed Global Equilibrium Equations 2-26
3.	Non	linear I	Material Models
	3.1	Genera	lized Hoek and Brown Model
		3.1.1	Introductions
		3.1.2	Elastic Stress-Strain Relationship 3-2
		3.1.3	Failure Surface 3-2
		3.1.4	Flow Rule
		3.1.5	Consistency Equation
		3.1.6	Incremental Elasto-plastic Constitutive Law 3-5
		3.1.7	Calculation of {a}
	3.2	Single	Hardening Elasto-Plastic Model
		3.2.1	Introductions
		3.2.2	Notations
		3.2.3	Total Strain Formulation 3-14
		3.2.4	Elastic Response
		3.2.5	Failure Surface
		3.2.6	Plastic Response Related to Yield Surface 3-18
		3.2.7	Plastic Response Along the Failure Surface 3-24

3.3	JWL Hi	gh Explosive Model
3.4	Modified Cam Clay Model with Creep	
	3.4.1	Introductions
	3.4.2	Yield and Failure Equations 3-29
	3.4.3	Elastic Stress-Strain Relationship 3-29
	3.4.4	Plastic Strain Increment 3-30
	3.4.5	Creep Strain Increment 3-31
	3.4.6	Total Strain Increment 3-33
	3.4.7	Consistency Equation 3-33
	3.4.8	Evaluation of $d\lambda_p$ 3-33
	3.4.9	Effective Stress Increment 3-34
	3.4.10	Evaluation of Derivatives 3-35
3.5	Engine	ering Model
	3.5.1	Introductions
	3.5.2	Hydrostatic Response 3-36
	3.5.3	Plastic Shear Response 3-37
	3.5.4	Parameter Determination 3-37
3.6	Joint M	lodel
	3.6.1	Introductions
	3.6.2	Strain-Displacement Relation 3-40
	3.6.3	Normal Stress-Strain Relation 3-42
	3.6.4	Shear Stress-Strain Relation 3-43
	3.6.5	Element Stiffness Matrix 3-44
3.7	Genera	alized Decoupled Hyperbolic Model
	3.7.1	Introductions
	3.7.2	Stress-Strain Relation 3-46
	3.7.3	Shear Strength Equation 3-48
4. Reference	es	4-1

Introduction

1.1 Introduction

SMAP-3D, which is an upgraded follow-on to the original MPDAP (Multi-Phase Dynamic Analysis Program), is a three-dimensional finite element computer program which has been continuously improved based on theoretical and experimental works since 1982. The program has been used to study fundamental mechanics of saturated porous medium. The program can be a powerful tool for the geomechanical analysis since it can solve static, consolidation and dynamic problems in dry, partially saturated or fully saturated soils and porous rock mass. The program considers material, geometric and boundary condition nonlinearities. Next two sections describe theoretical backgrounds of program SMAP-3D.

Section 2 describes theoretical formulations of nonlinear two-phase medium. Nonlinear compressibility equations are derived in detail for grains, saturated pore water, and partially saturated pore water. Field equations representing fundamental mechanics of two-phase medium are presented.

These field equations include effective stress law, constitutive equation for skeleton deformation, continuity equation of pore fluid, equation of motion for the bulk mixture, and equation of motion for pore fluid. Then, these field equations are discretized in space and expressed in incremental forms. Finally, global equilibrium equations are derived by principle of virtual work and then linearized to be solved by linear equation solver.

Section 3 describes constitutive relations of various nonlinear material models available in the program SMAP-3D. These nonlinear models include; Generalized Hoek and Brown Model, Single Hardening Elasto-Plastic Model, JWL High Explosive Model, Modified Cam Clay Model with Creep, Engineering Model, Joint Model, and Generalized Decoupled Hyperbolic Model.

To see the validation of the computational algorithms of the computer program SMAP-3D, refer to SMAP-3D Example Problems.

Finite Element Formulation of Nonlinear Two-Phase Medium

2.1 Introduction

Biot introduced fundamental analytical work describing the behavior of saturated porous media in a series of papers extending over many years (e.g. 1956, 1962a and 1962b). Other investigators have applied Biot's analytic results using techniques which approximate his equations with varying degrees of accuracy and sophistication (e.g. Ghaboussi and Wilson 1972, Mengi and McNiven, 1977). Theoretical formulations incorporated in the code SMAP-3D are the extension of Biot's two-phase theory to nonlinear region. These nonlinear two-phase theories have been developed over a decade under the sponsorship of Air Force Office of Scientific Research (e.g. Kim and Blouin 1984, Kim et al. 1986, 1987 and 1988).

In this section, the fundamental equations implemented in the code SMAP-3D are described. First the individual material components compressibility models are described in Subsection 2.2 for the solid grain, Subsection 2.3 for the pore water and Subsection 2.4 for the partially saturated water. Nonlinear material models of the skeleton are presented in Section 3. Field equations described in Subsection 2.5 include effective stress law, constitutive equation for skeleton deformation, continuity equation of pore fluid flow, equation of motion for the bulk mixture and equation of motion for pore fluid.

These field equations are described in terms of nodal values and expressed in incremental form in Subsection 2.6. Finally, global equilibrium equations for the two-phase medium are formulated in Subsection 2.7 and linearized to be solved by linear equation solver in Subsection 2.8.

2.2 Grain Model

To model the nonlinear response of the solid grains to both the applied pore pressure and effective stress, analytic expressions for the deformation of solids at high pressure are employed. High pressure data for many rocks and minerals show a linear relationship between loading wave velocity and particle velocity (e.g. Allen, 1967). The loading wave velocity can be expressed as:

$$\mathbf{c}_{\mathsf{L}} = \mathbf{c}_{\mathsf{o}} + \mathsf{S} \, \mathbf{v}_{\mathsf{p}} \tag{2.1}$$

where:

= Loading wave velocity C_L

= The initial wave velocity at relatively low pressure

= Peak particle velocity

S = Experimentally determined constant relating c_{L} to v_{D} (generally equal to about 1.5 for most dense rocks and minerals)

Conservation of mass and momentum on either side of the wave front yields the familiar relationships:

$$\sigma_{p} = \rho_{o} c_{L} v_{p}$$
 (2.2)

$$M = \rho_0 c_L^2 \tag{2.3}$$

where:

 σ_D = Peak axial stress

 ρ_{\circ} = Initial material density

 $M = Constrained secant modulus = \sigma_p / \epsilon_p$

 ε_p = Peak axial strain corresponding to the peak stress σ_p

Substitution of Equation 2.1 into 2.2 gives:

$$\sigma_{p} = \rho_{o} c_{o} v_{p} + \rho_{o} S v_{p}^{2}$$
(2.4)

and solving for peak particle velocity as a function of peak stress yields

$$v_p = \frac{f(\sigma_p)}{2 \rho_0 S} \tag{2.5}$$

where

$$f(\sigma_{p}) = (\rho_{o}^{2} c_{o}^{2} + 4 \rho_{o} S \sigma_{p})^{1/2} - \rho_{o} c_{o}$$
 (2.6)

Substitution of Equation 2.1, 2.5, and 2.6 into Equation 2.3 gives:

$$M = F(\sigma_p) = \rho_o c_o^2 + c_o f(\sigma) + \frac{f^2(\sigma)}{4\rho_o}$$
(2.7)

The tangent constrained modulus, M_t , used in the numerical model is defined as the slope of the stress strain curve by:

$$M_{t} = \frac{d\sigma}{d\epsilon}$$
 (2.8)

From Equation 2.7 and the definition of constrained modulus, M:

$$\varepsilon_{p} = \frac{\sigma_{p}}{F(\sigma_{p})} \tag{2.9}$$

Differentiating Equation 2.9 with respect to $\sigma_{\!_{p}}$ and inverting gives the tangent constrained modulus as

$$M_{t} = \frac{F^{2}(\sigma_{p})}{F(\sigma_{p}) - \sigma_{p} F'(\sigma_{p})}$$
(2.10)

Differentiating Equations 2.6 and 2.7 with respect to $\sigma_{\!_{D}}$ yields:

$$F'(\sigma_p) = c_o f'(\sigma_p) + \frac{f(\sigma_p) f'(\sigma_p)}{2\rho_o}$$
(2.11)

and

$$f'(\sigma_p) = \frac{2 \rho_o S}{(\rho_o^2 c_o^2 + 4 \rho_o S \sigma_p)^{1/2}}$$
(2.12)

Hence, Equations 2.5 through 2.12 can be used to define high pressure constrained stress strain and modulus relationships for the solid grains.

For two phase, coupled calculations, the volumetric relationships for the solid grains should be specified in terms of the bulk modulus, $K_{\rm g}$, rather than in terms of the constrained modulus. At high pressures, the shear strength of the grain materials becomes insignificant compared to the applied stress and the materials tend to behave like fluids. At these pressures, the tangent bulk modulus equals the tangent constrained modulus with Poisson's ratio equal to 0.5. Beneath some threshold pressure, p_b , Poisson's ratio begins to decrease from 0.5 at p_b to an initial value of Poisson's ratio, v_o , at a low value of mean stress. We have used a simple relationship to approximate the influence of mean stress on Poisson's ratio for the solid grains:

$$\mathbf{K}_{\mathbf{q}} = \mathbf{g}(\mathbf{p}) \ \mathbf{M}_{\mathbf{t}} \tag{2.13}$$

The ratio of the bulk modulus to the tangent constrained modulus, g(p) at pressures less than p_h is given by:

$$g(p) = \frac{2}{3} \frac{(1 - 2v_o)}{(1 - v_o)} \frac{p}{p_b} + \frac{(1 + v_o)}{3(1 - v_o)}$$
(2.14)

For pressures greater than p_b;

$$g(p) = 1$$
 (2.15)

Poisson's ratio can be computed as a function of the modulus ratio at a given pressure as:

$$\mathbf{v} = \frac{3 \ \mathbf{g}(\mathbf{p}) - 1}{1 + 3 \ \mathbf{g}(\mathbf{p})} \tag{2.16}$$

2.3 Pore Water Model

The model for the nonlinear, elastic compressibility of the pore water is derived from an equation of state reported by Ahrens (1988) and attributed to Bakanova, et. al. (1976). This equation relates the shock velocity in water to the peak particle velocity. In the lower pressure regime, a quadratic relation is used while a linear relation is used in the higher pressure regime. The transition point between the two regimes is defined in terms of a peak particle velocity at the transition, $V_{\rm pt}.$ Bakanova's equations can be expressed as:

$$v_{s} \le v_{pt}$$
:
 $c = c_{1} + S_{1} v_{p} + S_{2} v_{p}^{2}$ (2.17)

$$\mathbf{v_s} > \mathbf{v_{pt}}$$
:
 $\mathbf{c} = \mathbf{c_2} + \mathbf{S_3} \mathbf{v_p}$ (2.18)

where:

Shock propagation velocity in the fluid

= Peak fluid particle velocity

 c_1, S_1, S_2 = Constants used to fit data below the transition Constants used to fit data above the transition

Equation 2.18 can also be expressed in terms of the shock velocity at the transition point, c_t . Substituting v_{pt} into Equation 2.18 yields:

$$\mathbf{c_2} = \mathbf{c_t} - \mathbf{S_3} \, \mathbf{v_{pt}} \tag{2.19}$$

Substituting 2.19 into 2.18 produces this expression for the shock velocity above the transition:

$$v_s > v_{pt}$$
:
 $c = c_t + S_3 (v_p - v_{pt})$ (2.20)

where:

Shock velocity at the transition C+ Peak particle velocity at the transition (Model constant)

At the transition point, the shock velocity from Equations 2.17 and 2.20 should be equal to preserve continuity. Setting Equations 2.17 and 2.20 equal at $v_p = v_{pt}$ gives:

$$c_t = c_1 + S_1 v_{pt} + S_2 v_{pt}^2$$
 (2.21)

thereby defining c, in terms of the model constants. Equations 2.17, 2.20, and 2.21 (with the constants c_1 , S_1 , S_2 , and S_3) define the shock velocity as a function of peak particle velocity.

To derive a bulk modulus for water as a function of pressure, we first need an expression for peak particle velocity as a function of pressure. Conservation of mass and momentum on either side of the wave front yields the familiar relationship from shock physics:

$$\mathbf{\pi}_{\mathbf{p}} = \mathbf{\rho}_{\mathbf{o}} \, \mathbf{c} \, \mathbf{V}_{\mathbf{p}} \tag{2.22}$$

where:

 π_p = Pore fluid pressure ρ_0 = Mass density of fluid

Substitution of Equation 2.17 into 2.22 yields an expression for the transition fluid pressure (π_{pt}):

$$\pi_{\text{pt}} = \rho_{\text{o}} \, \mathbf{v}_{\text{pt}} \, (\mathbf{c}_{1} + \mathbf{S}_{1} \, \mathbf{v}_{\text{pt}} + \mathbf{S}_{2} \, \mathbf{v}_{\text{pt}}^{2}) \tag{2.23}$$

For water, the transition pressure is greater than 30,000 MPa. Below the transition pressure, substitution of Equation 2.17 into 2.22 will give:

$$v_p^3 + \frac{S_1}{S_2} v_p^2 + \frac{c_1}{S_2} v_p - \frac{\pi_p}{\rho_o S_2} = 0$$
 (2.24)

This cubic equation can be solved to yield an expression for $v_{_p}$ as a function of fluid pressure below the transition pressure $\pi_{_{pt}}$: where:

$$v_p = m \cos \left[\frac{1}{3} \cos^{-1} \left(\frac{3\beta}{\alpha m} \right) + \frac{4\pi}{3} \right] - \frac{S_1}{3S_2}$$
 (2.25)

where

$$\alpha = \frac{c_1}{S_2} - \frac{1}{3} \left(\frac{S_1}{S_2} \right)^2 \tag{2.26}$$

$$\beta = \frac{-\pi_p}{\rho_o S_2} - \frac{1}{3} \left(\frac{S_1}{S_2} \right) \left(\frac{c_1}{S_2} \right) + \frac{2}{27} \left(\frac{S_1}{S_2} \right)^3$$
 (2.27)

$$m = 2\sqrt{\frac{-\alpha}{3}}$$
 (2.28)

Above the transition pressure, substitution of Equation 2.20 into 2.22 yields a quadratic equation:

$$v_p^2 + \left(\frac{c_t - S_3 v_{pt}}{S_3}\right) v_p - \frac{\pi_p}{\rho_o S_3} = 0$$
 (2.29)

Solving this equation for v_p as a function of fluid pressure gives v_p for pressures above the transition pressure π_{pt} :

$$\mathbf{v}_{p} = -\left(\frac{\mathbf{c}_{t} - \mathbf{S}_{3} \, \mathbf{v}_{pt}}{2 \, \mathbf{S}_{3}}\right) + \left[\left(\frac{\mathbf{c}_{t} - \mathbf{S}_{3} \, \mathbf{v}_{pt}}{2 \, \mathbf{S}_{3}}\right)^{2} + \frac{\pi_{p}}{\rho_{o} \, \mathbf{S}_{3}}\right]^{\frac{1}{2}}$$
(2.30)

The elastic bulk modulus of water (K_w) is defined as:

$$K_{w} = \frac{d\pi_{p}}{d\varepsilon_{v}} = \frac{d\pi_{p} / dv_{p}}{d\varepsilon_{v} / dv_{p}}$$
(2.31)

where ϵ_v is the volume strain corresponding to the pressure π_p . Taking the derivative of Equation 2.22:

$$\frac{d\pi_p}{dv_p} = \rho_o (c' v_p + c) \tag{2.32}$$

The volume strain is given by:

$$\varepsilon_{v} = \frac{V_{p}}{C} \tag{2.33}$$

and taking the derivative yields:

$$\frac{d\varepsilon_{v}}{dv_{p}} = \frac{c - v_{p} c'}{c^{2}}$$
 (2.34)

Substitution of Equations 2.32 and 2.34 into 2.31 gives an expression for the bulk modulus in terms of the shock and peak particle velocities:

$$K_{w} = \frac{\rho_{o} c^{2} (c + v_{p} c')}{c - v_{p} c'}$$
 (2.35)

The derivatives of the shock velocity with respect to the peak particle velocity are given by:

$$\pi_{p} \leq \pi_{pt} :$$

$$c' = S_{1} + 2 S_{2} V_{p}$$
(2.36)

$$\pi_p > \pi_{pt}:$$

$$c' = S_3$$
(2.37)

The material constant values for this model are given in Table 2.1 for fresh water and sea water. The fresh water values are from Bakanova, et. al. (1976) as reported by Ahrens (1988). Parameters for sea water were fit to compressibility data described by Kim, et. al. (1986) and attributed to Britt (1985).

2.4 Partially Saturated Pore Water Model

When rock or soil is unsaturated, compression of the pore water and solid grains is nearly insignificant when compared with the compression of pore air. Under these conditions, material behavior is governed mostly by the skeleton model. With sufficient compression, the pore air gets squeezed out and the material becomes saturated. Rischbieter, et. al. (1977) demonstrated that even a minute amount of entrapped air drastically alters the pore pressure response in multiphase porous materials. To simulate this behavior, the pore fluid model is modified to account for the compressibility of pore air and converges to a saturated condition. Note that this model is invoked only when the initial saturation is less than 100%.

The compressibility of the air-water mixture, C_{aw} , is defined as:

$$C_{aw} = \frac{d\epsilon_{v,aw}}{d\pi_{p}}$$
 (2.38)

where π_p is the fluid pressure. The volumetric strain in the air-water mixture, $\epsilon_{v,aw}$, is the sum of volume strain in the air and water. Using the definition of the initial saturation, it can be shown that:

$$\varepsilon_{v,aw} = (1 - S_o) \varepsilon_{v,a} + S_o \varepsilon_{v,w}$$
 (2.39)

where:

 $\varepsilon_{v,aw}$ = Volume strain of air-water mixture

 $\epsilon_{v,a}$ = Volume strain of air bubbles

 $\varepsilon_{v,w}$ = Volume strain of water (from Equation 2.33)

 S_{\circ} = Initial saturation

From Equations 2.38 and 2.39 we can get an expression for the compressibility of the air-water mixture:

$$C_{aw} = (1 - S_o) C_a + S_o C_w$$
 (2.40)

Since the compressibility is the inverse of the bulk modulus, Equation 2.40 can be expressed as:

$$\frac{1}{K_{aw}} = \frac{1 - s_o}{K_a} + \frac{s_o}{K_w}$$
 (2.41)

where:

 K_{aw} = Bulk modulus of air-water mixture

 K_a = Equivalent bulk modulus of air bubbles in the fluid

 K_{w} = Bulk modulus of water (from Equation 2.35)

The volume strain and the equivalent bulk modulus of the air bubbles in the pore fluid are derived here using the adiabatic ideal gas law (γ -law). The model has been shown to be applicable when the degree of pore water saturation is above approximately 85% where the pore air is thought to exist as small bubbles within the fluid (occluded state).

The model is derived from the adiabatic ideal gas law:

$$\pi_{a} \cdot V_{a}^{\gamma} = \pi_{ao} \cdot V_{ao}^{\gamma} \tag{2.42}$$

where

 π_{ao} Initial air pressure (absolute pressure)

 π_a Current air pressure (absolute pressure)

v₂₀ Initial air volume

v. Current air volume

 γ Ratio of heat capacity (c_D/c_V)

The volume strain of air can be defined in terms of engineering strain:

$$\varepsilon_{v,a} = 1 - \left(\frac{V_a}{V_{ao}}\right) \tag{2.43}$$

Substituting Equation 2.42 into Equation 2.43, we can express the volume strain of air bubble in terms of air pressure:

$$\varepsilon_{\mathbf{v},\mathbf{a}} = \mathbf{1} - \left[\frac{\mathbf{\pi}_{\mathbf{a}\mathbf{o}}}{\mathbf{\pi}_{\mathbf{a}}}\right]^{\frac{1}{Y}} \tag{2.44}$$

Neglecting the influence of surface tension,

$$\mathbf{\pi_a} = \mathbf{\pi} + \mathbf{p_a} \tag{2.45}$$

where

 π Current pore water pressure (gage pressure)

P_a Reference atmospheric pressure

Substitution of Equation 2.45 into Equation 2.44 yields

$$\varepsilon_{v, a} = 1 - \left(\frac{\pi_a}{\pi + P_a}\right)^{\frac{1}{\gamma}} \tag{2.46}$$

Tangent bulk modulus of air bubbles can be defined as

$$K_{a} = \frac{d\pi_{a}}{d\epsilon_{va}}$$
 (2.47)

Differentiating Equation 2.46 with respect to π ,

$$\frac{d\varepsilon_{v,a}}{d\pi_a} = \frac{1}{\gamma \cdot \pi_{ao}} \left(\frac{\pi_{ao}}{\pi + P_a} \right)^{\left(1 + \frac{1}{\gamma}\right)}$$
(2.48)

Substitution of Equation 2.48 into Equation 2.47 yields

$$K_{a} = \gamma \cdot \Pi_{ao} \left[\frac{\Pi + P_{a}}{\Pi_{ao}} \right]^{\left(1 + \frac{1}{\gamma}\right)}$$
 (2.49)

Equations 2.35 and 2.49, when substituted into Equation 2.41, define the compressibility of the pore air-water mixture. The model does not employ an explicit expression for the saturation point, where the air bubbles no longer exist. However, Equation 2.49 implies that the stiffness of the pore air increases with the pressure. As the pressure increases, the contribution of the air to the net compressibility of the mixture becomes insignificant when compared to the compressibility of the water. This, in essence, results in fully saturated behavior but with a smooth model transition during collapse of the air bubbles. An example pressure-volume curve for water with an initial air content of 5% is shown in Figure 2.1. Notice that the mixture becomes pressure saturated at a volume strain of about 5%.

Table 2.1 Fluid compressibility model constants (See Section 2.3 for definitions of constants)

Parameter	Unit	Fresh Water Sea Wate	
ρ_0	kg /m³	1002.8	1026
C ₁	m/s	1500	1522
S ₁	-	2.00	1.97
S ₂	s/m	-1.07 x 10 ⁻⁴	-0.898 x 10 ⁻⁴
S ₃	-	1.144	1.123
V _{pt}	m/s	4000	4573
C _t	m/s	7788	8653
$\pi_{\sf pt}$	MPa	31,240 40,600	

2.5 Field Equations

Effective Stress Law

Terzaghi's effective stress equation is fundamental to the development of the fully coupled model. It relates the total applied stress, σ , to the pore pressure, π , and the effective stress, σ' , according to

$$\sigma_{ii} = \sigma'_{ii} + \delta_{ii} \pi \tag{2.50}$$

where

 $\begin{array}{lll} \sigma_{ij} & = & \text{Total stress} \\ \sigma'_{ij} & = & \text{Effective stress} \\ \delta_{ij} & = & \text{Kronecker's delta} \\ \delta_{ij} & = & 0 \text{ if } i \neq j \\ \delta_{ii} & = & 1 \text{ if } i = j \end{array}$

Constitutive Equation for Skeleton Deformation

The deformation of the porous skeleton is related to the applied effective stress and the pore pressure acting on the solid grains. The stress-strain relationship is given by

$$\{d\sigma'\} = [D^{ep}] \left(\{d\epsilon\} - \frac{1}{3 K_a} \{1\} d\pi\right)$$
 (2.51)

The last term in Equation 2.51 is the strain in the skeleton resulting from compression of the solid grains by the pore pressure.

Continuity Equation of Pore Fluid Flow

The continuity equation for pore fluid flow is derived from mass conservation relationships. The volumetric strain of the pore fluid, $\epsilon_{\!\scriptscriptstyle f},$ is given by

$$d\varepsilon_{f} = -\frac{d\rho_{f}}{\rho_{f}} = C_{f} d\pi$$
 (2.52)

where

Pore fluid compressibility C_f

Pore fluid pressure

The volume strain of the solid grains, $\epsilon_{_{\! g}}$, is give by

$$d\varepsilon_g = -\frac{d\rho_g}{\rho_g} = C_g d\pi + \frac{C_g}{1-n} dp'$$
 (2.53)

where

 C_g = Bulk compressibility of solid grains p' = Effective mean pressure

The dry density, $\rho_{\scriptscriptstyle d}$, is given by

$$\rho_{d} = \frac{m_{g}}{V_{t}} = (1-n) \rho_{g}$$
 (2.54)

where $m_{_{\rm g}}$ is $% {\rm d}$ the mass of the solid grains in skeleton volume $~V_{_{\rm t}}$. The change in dry density is given by

$$d\rho_d = -\rho_d d\epsilon_v \tag{2.55}$$

where $\epsilon_{\scriptscriptstyle v}$ is the volumetric strain of the skeleton. Differentiating Equation 2.54 with respect to n and $\rho_{\mbox{\tiny g}}$ gives

$$d\rho_d = (1-n) d\rho_q - \rho_q dn$$
 (2.56)

Equating 2.55 and 2.56 yields

$$d\epsilon_{v} = \frac{dn}{1-n} - \frac{d\rho_{g}}{\rho_{g}}$$
 (2.57)

Conservation of mass for the pore fluid within a specified initial volume of saturated porous material is given by

$$\mathbf{n} \ \mathbf{\rho}_{\mathbf{f}} \ \mathbf{V}_{\mathbf{t}} = \ \overline{\mathbf{n}} \ \overline{\mathbf{\rho}}_{\mathbf{f}} \ \overline{\mathbf{V}}_{\mathbf{t}} \tag{2.58}$$

where as illustrated in Figure 2.2, the terms to the left of the equal sign represent the fluid mass under the initial conditions and the terms to the right represent the same fluid mass under deformed conditions.

Equation 2.58 may be expressed in infinitesimal incremental form as

$$n \rho_f V_t = (n + dn) (\rho_f + d\rho_f) (1 + d\epsilon_F) V_t$$
 (2.59)

where

 $\varepsilon_{\rm F}$ = Volumetric diffusion of pore fluid as depicted in Figure 2.2

Solving Equation 2.59 for $d\varepsilon_{\scriptscriptstyle F}$ and discarding second order terms yields

$$d\varepsilon_{F} = -\frac{dn}{n} - \frac{d\rho_{f}}{\rho_{f}}$$
 (2.60)

Equation 2.60 is combined with Equation 2.57 by elimination of $\mbox{ dn to yield}$

$$(1-n) de_v + n de_F + (1-n) \frac{d\rho_g}{\rho_a} + n \frac{d\rho_f}{\rho_f} = 0$$
 (2.61)

Combining Equations 2.52 and 2.53 with 2.61 gives

$$n (d\varepsilon_F - d\varepsilon_v) + d\varepsilon_v - \frac{1}{K_m} d\pi - c_g dp' = 0$$
 (2.62)

where $K_{\!_{m}}$ is the bulk modulus of the solid/fluid mixture which is expressed by

$$K_{m} = \frac{1}{n C_{f} + (1-n) C_{g}}$$
 (2.63)

The change in effective mean pressure is given by

$$dp' = K_s (d\varepsilon_v - C_q d\pi)$$
 (2.64)

Substituting Equation 2.64 into 2.62 gives

$$n \left(d\varepsilon_{\text{F}} - d\varepsilon_{\text{v}}\right) + \left(1 - C_{\text{g}} K_{\text{s}}\right) d\varepsilon_{\text{v}} + \left(C_{\text{g}}^{2} K_{\text{s}} - \frac{1}{K_{\text{m}}}\right) d\pi = 0 \tag{2.65}$$

or

$$n (de_{F} - de_{v}) = \left(\alpha - \frac{C_{g}^{2}}{9} \{1\}^{T} [D^{ep}] \{1\}\right) d\pi$$

$$-\left(\{1\}^{T} - \frac{C_{g}}{3} \{1\}^{T} [D^{ep}]\right) \{de\}$$
(2.66)

Equation 2.66 can be expressed in the following convenient form:

$$d\pi = \overline{m}_2 \cdot d\varepsilon_v + \overline{m} \cdot n (d\varepsilon_F - d\varepsilon_v)$$
 (2.67)

$$\overline{\mathbf{m}} = \frac{1}{\left[\frac{1}{K_{m}} - \frac{K_{s}^{ep}}{K_{g}^{2}}\right]}$$
(2.68)

$$\overline{m}_{2} = \left[1 - \frac{K_{s}^{ep}}{K_{g}}\right] \cdot \overline{m}$$
 (2.69)

Equation of Motion for the Bulk Mixture

The differential equation of motion governing the bulk mixture is expressed by equating the stress gradient to the inertial resistance as

$$\sigma_{ii j} = (1 - n) \rho_s \ddot{u}_i + n \rho_f \ddot{U}_i$$
 (2.70)

 $\sigma_{ij,j}$ is the total stress gradient applied to an infinitesimal element of saturated material at some given time. $\sigma_{ij,j}$ is expressed in tensor and represents the stress gradient in each of three mutually perpendicular coordinates (e.g. see Mendleson, 1968). For instance, in the x direction,

$$\sigma_{xj, j} = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = (1 - n) \rho_{s} \ddot{u}_{x} + n \rho_{f} \ddot{U}_{x}$$
 (2.71)

The term (1-n) ρ_s is the mass of the soil skeleton per unit volume of saturated material, where n is the porosity and ρ_s is the mass density of the solid grains. u_i is the displacement of the skeleton in the i direction and $\mathbf{\hat{u}}$ is the acceleration of the skeleton in the i direction. The term n ρ_f is the mass of pore fluid per unit volume of saturated material where ρ_f is the mass density of the pore fluid. U_i is the absolute displacement of the pore fluid in the i direction.

The bulk mass density of the saturated material, ρ , is given by

$$\rho = (1-n) \rho_s + n \rho_f$$
 (2.72)

Substitution of the value for (1-n) $\rho_{\text{\tiny S}}$ from Equation 2.72 into Equation 2.70 gives

$$\sigma_{ii i} = (\rho - n \rho_i) \ddot{u}_i + n \rho_i \ddot{U}_i$$
 (2.73)

A term w_i is introduced which is the apparent fluid displacement in the i direction relative to the soil skeleton and is given by

$$\mathbf{w}_{i} = \mathbf{n} \left(\mathbf{U}_{i} - \mathbf{u}_{i} \right) \tag{2.74}$$

In seepage problems, w_i , is referred to as the discharge displacement. It describes the discharge of fluid through a soil mass of unit area. The discharge velocity, or apparent relative velocity, $\dot{w}_{\rm I}$, between the soil particles and pore water is the velocity of water in a discharge duct of unit area needed to maintain the actual relative velocity in the porous soil of the same unit area. The actual relative velocity between the skeleton and the pore water is given by $\dot{w}_{\rm i}$ / n. Finally, $\ddot{w}_{\rm i}$ is the apparent relative acceleration between the soil skeleton and pore water given by

$$\ddot{\mathbf{w}}_{i} = \mathbf{n} \left(\ddot{\mathbf{U}}_{i} - \ddot{\mathbf{u}}_{i} \right) \tag{2.75}$$

Equation 2.73 can be expressed in terms of the apparent relative fluid acceleration as simply

$$\sigma_{ii,j} = \rho \ddot{\mathbf{u}}_{i} + \rho_{f} \ddot{\mathbf{w}}_{i} \tag{2.76}$$

Equation of Motion for Pore Fluid

The finite element code SMAP-3D is capable of calculating the flow of pore fluid between elements. The flow of fluid with respect to the skeleton is controlled by Forchheimer's permeability model as described in a series of reports to the Air Force Office of Scientific Research (Kim, et. al., 1986, 1987, 1988; Blouin et. al., 1990, 1991). The Forchheimer model, as described by Kim, et. al. (1988) can be expressed as:

$$\pi_{,i} = \frac{\rho_f g}{k} \dot{w}_i + \frac{\beta_f}{k^{1/2}} \dot{w}_i^2 + \rho_f \ddot{U}_i$$
 (2.77)

where

 $\pi_{,i}$ = Pore pressure gradient

g = Acceleration of gravity $\rho_f = Mass density of pore fluid$

k = Darcy's coefficient of permeability

(function of skeleton and fluid properties)

 β_{f} = Ward's turbulent flow coefficient

(function of skeleton and fluid properties)

 $\dot{w}~=~$ Apparent flow velocity relative to the skeleton

 $\ddot{\mathbf{U}}$ = Absolute acceleration of pore fluid

The first term in Equation 2.77 is simply Darcy's law while the velocity squared term was apparently first proposed by Forchheimer (1901). The first two terms represent the frictional component of the pressure gradient while the last term accounts for the inertial effect of fluid flow.

Equation 2.77 can also be written in the form:

$$\pi_{,i} = \frac{\rho_f g}{k'} \dot{w}_i + \rho_f \ddot{U}_i$$
 (2.78)

where k' represents an equivalent permeability coefficient given by:

$$\mathbf{k'} = \frac{\mathbf{k}}{1 + \frac{\beta_{\tilde{\mathbf{f}}}}{\rho_{f} g} \sqrt{\mathbf{k}} |\dot{\mathbf{w}}_{i}|}$$
(2.79)

Hence, the flow of pore fluid in the soil skeleton is governed by Equations 2.78 and 2.79 and the flow coefficients k and β_f which can be determined from laboratory test data. Using the Equation 2.75, Equation 2.78 can be expressed in terms of skeleton and apparent relative fluid motions given by

$$\pi_{,i} = \frac{\rho_f}{n} \ddot{\mathbf{w}}_i + \rho_f \ddot{\mathbf{u}}_i + \mathbf{k}' \dot{\mathbf{w}}_i$$
(2.80)

More recently, Blouin and his coworkers (1991) have proposed a refined expression of the Forchheimer model that, while remaining equivalent to Equation 2.77, clarifies the distinction between fluid-related and skeleton-related permeability properties. This new expression is:

$$\Pi_{,i} = \frac{\mu}{\alpha} \dot{w}_{i} + \frac{\rho_{f}}{\beta} \dot{w}_{i}^{2} + \rho_{f} \ddot{U}_{i}$$
(2.81)

where

 μ = Dynamic viscosity of the fluid

 α , β = Flow coefficients that are properties of the porous skeleton only

The conversions between the different permeability parameters are obtained from equating the corresponding terms of Equations 2.77 and 2.81 to obtain:

$$k = \frac{\alpha \rho_f g}{\mu}$$
 (2.82)

$$\beta_{f} = \frac{k^{\frac{1}{2}} \rho_{f}}{\beta} \tag{2.83}$$

While the parameters α and β and Equation 2.81 form the preferred expression for the permeability model, the current implementation of the model in our numerical codes follow the form of Equations 2.77 through 2.80.

2.6 Spatial Discretization and Incremental **Relationships of Field Variables**

Within each element, field variables can be discretized into element nodal values.

 $\{\Delta u\} = [N] \{\Delta u\}_e$

$$\{\Delta \mathbf{w}\} = [\mathbf{N}] \{\Delta \mathbf{w}\}_{\mathbf{e}}$$

$$\{\Delta \mathbf{\varepsilon}\} = [\mathbf{B}] \{\Delta \mathbf{u}\}_{\mathbf{e}}$$

$$\Delta \mathbf{w}_{i,i} = \{\mathbf{1}\}^{\mathsf{T}} [\mathbf{B}] \{\Delta \mathbf{w}\}_{\mathbf{e}}$$

$$(2.84)$$

Stress vector at time step n can be expressed as:

$$\{\sigma_{n}\} = \{\sigma_{n-1}\} + \{\Delta\sigma'\} + \{1\} \Delta\Pi$$
 (2.85)

Combining Equations 2.50, 2.51, 2.67 and 2.84 yields

$$\{\Delta\sigma\} = ([D^{ep}][B] + \overline{m}_1 \{1\} \{1\}^T [B]) \{\Delta u\} + \overline{m}_2 \{1\} \{1\}^T [B] \{\Delta w\}$$
 (2.86)

where

$$\overline{\mathbf{m}}_{1} = \left[1 - \frac{\mathbf{K}_{s}^{\text{ep}}}{\mathbf{K}_{n}}\right]^{2} \cdot \overline{\mathbf{m}}$$
 (2.87)

Equation 2.67 can be rewritten in incremental form as:

$$\Delta \pi = \overline{m}_2 \cdot \Delta u_{i,i} + \overline{m} \cdot \Delta w_{i,i}$$
 (2.88)

2.7 Global Equilibrium Equations

Two global equilibrium equations are derived, first in terms of field variables and then discretized using nodal variables.

The first equates the total internal stresses plus the inertia forces to the applied boundary traction. Letting the solid skeleton movement be the virtual displacement, δu , the following global equilibrium equation for the bulk mixture is established:

$$\int_{\mathbf{v}} {\{\delta \mathbf{e}\}}^{\mathsf{T}} {\{\sigma\}} d\mathbf{v} = \int_{\mathbf{s}} {\{\delta \mathbf{u}\}}^{\mathsf{T}} {\{\mathsf{T}\}} d\mathbf{s} - \int_{\mathbf{v}} {\{\delta \mathbf{u}\}}^{\mathsf{T}} \rho {\{\ddot{\mathbf{u}}\}} d\mathbf{v}
- \int_{\mathbf{v}} {\{\delta \mathbf{u}\}}^{\mathsf{T}} \rho_{\mathsf{f}} {\{\ddot{\mathbf{w}}\}} d\mathbf{v}$$
(2.89)

where

 $\delta \varepsilon$ is the virtual strain corresponding to virtual displacement δu .

The second equates the applied pore pressure on the boundary to the internal pore pressure plus the flow resistance force plus the inertia force on the pore fluid. Taking the apparent relative fluid movement as the virtual displacement, δw , the internal virtual work done by the pore pressure should be equal to the external virtual work. That is,

$$\int_{v} (\delta w_{i,i})^{T} \pi \cdot dv = \int_{s} {\{\delta w\}^{T} \hat{\pi} ds} - \int_{v} {\{\delta w\}^{T} [r] \cdot \{\dot{w}\} dv}$$

$$- \int_{v} {\{\delta w\}^{T} \rho_{f} \{\ddot{u}\} dv} - \int_{v} {\{\delta w\}^{T} \frac{1}{n} \rho_{f} \{\ddot{w}\} dv}$$

$$(2.90)$$

Replacing the field variables in Equation 2.89 and 2.90 by the discretized nodal variables using Equation 2.84 gives the following global equilibrium equation at time step n:

$$\begin{bmatrix} \mathbf{M}_{m} & \mathbf{M}_{c} \\ \mathbf{M}_{c}^{\mathsf{T}} & \mathbf{M}_{f} \end{bmatrix} \begin{Bmatrix} \ddot{\mathbf{u}}_{n} \\ \ddot{\mathbf{w}}_{n} \end{Bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \begin{Bmatrix} \dot{\mathbf{u}}_{n} \\ \dot{\mathbf{w}}_{n} \end{Bmatrix} + \begin{bmatrix} \mathbf{K}_{t} + \mathsf{EE} & \mathbf{C} \\ \mathbf{C}^{\mathsf{T}} & \mathbf{E} \end{bmatrix} \begin{Bmatrix} \Delta \mathbf{u}_{n} \\ \Delta \mathbf{w}_{n} \end{Bmatrix}$$

$$= \begin{Bmatrix} \mathbf{F}_{n} \\ \mathbf{G}_{n} \end{Bmatrix} - \begin{Bmatrix} \mathbf{R}_{n-1}^{\mathsf{s}} + \mathbf{R}_{n-1}^{\mathsf{f}} \\ \mathbf{R}_{n-1}^{\mathsf{f}} \end{Bmatrix}$$
(2.91)

$$M_{m} = \sum_{v} [N]^{T} \rho [N] dv$$

$$M_{c} = \sum_{v} [N]^{T} \rho_{f} [N] dv$$

$$M_{f} = \sum_{v} [N]^{T} \frac{1}{n} \rho_{f} [N] dv$$

$$H = \sum_{v} [r] [N]^{T} [N] dv$$

$$K_{t} = \sum_{v} [B]^{T} [D^{ep}] [B] dv$$

$$\begin{split} & \mathsf{EE} &= \; \sum \int_v \, \overline{m}_1 \; [\mathsf{B}]^T \; \{1\} \; \{1\}^T \; [\mathsf{B}] \; \, dv \\ & \mathsf{C} &= \; \sum \int_v \, \overline{m}_2 \; [\mathsf{B}]^T \; \{1\} \; \{1\}^T \; [\mathsf{B}] \; \, dv \\ & \mathsf{F}_n &= \; \sum \int_s \; [\mathsf{N}]^T \; \{T\} \; \, ds \; + \; \sum \int_v \; [\mathsf{N}]^T \; \rho \; \{b\} \; \, dv \\ & \mathsf{E} &= \; \sum \int_v \; \overline{m} \; [\mathsf{B}]^T \; \{1\} \; \{1\}^T \; [\mathsf{B}] \; \, dv \\ & \mathsf{G}_n &= \; \sum \int_s \; [\mathsf{N}]^T \; \; \widehat{n}_n \; \, ds \; + \; \sum \int_v \; [\mathsf{N}]^T \; \rho_f \; \{b\} \; \, dv \\ & \mathsf{R}_{n-1}^s &= \; \sum \int_v \; [\mathsf{B}]^T \; \{\sigma_{n-1}'\} \; \, dv \\ & \mathsf{R}_{n-1}^s &= \; \sum \int_v \; [\mathsf{B}]^T \; \{1\} \; \pi_{n-1} \; \, dv \end{split}$$

[r] = Inverse of permeability matrix

{b} = Component of body force vector

Equation 2.91 can be rewritten in the simpler form:

[M]
$$\{\ddot{\mathbf{d}}_{n}\}$$
 + [D] $\{\dot{\mathbf{d}}_{n}\}$ + [K] $\{\Delta\mathbf{d}_{n}\}$ = $\{P_{n}\}$ - $\{R_{n-1}\}$ (2.92)

2.8 Linearized Global Equilibrium Equations

Introducing a time integration method which incorporates both Newmark's β method and Wilson's θ method, the generalized acceleration vector is expressed as

$$\{\ddot{\mathbf{d}}_{n}\} = \mathbf{C}_{1} \{\Delta \mathbf{d}_{n}\} + \mathbf{C}_{2} \{\dot{\mathbf{d}}_{n-1}\} + \mathbf{C}_{3} \{\ddot{\mathbf{d}}_{n-1}\}$$
 (2.93)

where

$$C_{1} = \frac{1}{\beta \theta^{3} \Delta t^{2}}$$

$$C_{2} = -\frac{1}{\beta \theta^{2} \Delta t}$$

$$C_{3} = 1 - \frac{1}{2 \beta \theta}$$
(2.94)

and the generalized velocity vector is expressed as

$$\{\dot{\mathbf{d}}_{n}\} = \mathbf{B}_{1} \{\Delta \mathbf{d}_{n}\} + \mathbf{B}_{2} \{\dot{\mathbf{d}}_{n-1}\} + \mathbf{B}_{3} \{\ddot{\mathbf{d}}_{n-1}\}$$
 (2.95)

$$B_{1} = \frac{Y}{\beta \theta^{3} \Delta t}$$

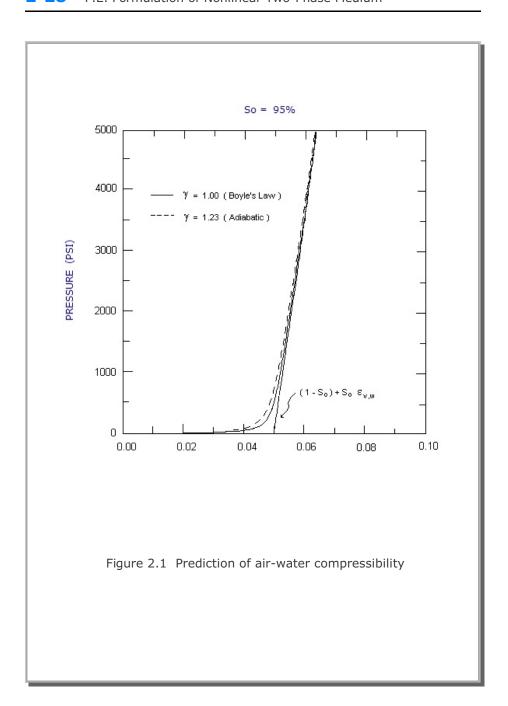
$$B_{2} = 1 - \frac{Y}{\beta \theta^{2}}$$

$$B_{3} = \Delta t - \frac{Y}{2 \beta \theta} \Delta t$$
(2.96)

Substituting Equations 2.93 and 2.95 into Equation 2.92 and rearranging, we can obtain the following linearized global equilibrium equations which can be solved simultaneously at each step:

$$[\tilde{K}] \{\Delta d_n\} = \{\tilde{P}_n\} \tag{2.97}$$

where the generalized stiffness matrix is given by


$$[\tilde{K}] = C_1[M] + B_1[D] + [K]$$
 (2.98)

and the generalized force vector is given by

$$\{\tilde{P}_{n}\} = \{P_{n}\} - \{R_{n-1}\} - [M] (C_{2} \{\dot{\underline{d}}_{n-1}\} + C_{3} \{\ddot{\underline{d}}_{n-1}\})$$

$$- [D] (B_{2} \{\dot{\underline{d}}_{n-1}\} + B_{3} \{\ddot{\underline{d}}_{n-1}\})$$

$$(2.99)$$

Conservation of Fluid Mass

$$\mathbf{n} \quad \mathbf{p}_{\mathbf{f}} \ \mathbf{v}_{\mathbf{t}} = \mathbf{n}' \ \mathbf{p}_{\mathbf{f}}' \ \mathbf{v}_{\mathbf{t}}'$$

 v_t = Apparent fluid volume before compression

 $v_t' = (1 + \varepsilon_F) v_t$: apparent fluid volume after compression

 ϵ_{v} = Volumetric strain of porous skeleton

 $\varepsilon_{\scriptscriptstyle F}$ = Volumetric diffusion of pore fluid

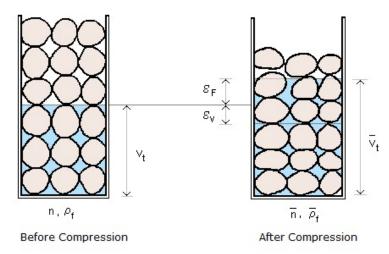


Figure 2.2 Schematic illustration of conservation of pore fluid mass in saturated porous materials

Nonlinear Material Models

3.1 Generalized Hoek and Brown Model

3.1.1 Introduction

Generalized Hoek and Brown Model represents the skeleton constitutive relations of soils or porous materials. In its generalized form, the model includes the empirically based Hoek and Brown failure equation as well as the classical Von Mises, Mohr-Coulomb, and Drucker-Prager failure equations. As one of the useful features, the model can use empirical data base for the strength of in situ rock mass when the in situ strength data are not available.

In this section, the 3-dimensional elasto-plastic matrix is derived for the Generalized Hoek and Brown Model. The model is elastic below the failure surface and perfectly plastic along the failure surface with the volumetric and deviatoric behaviors dependent upon one another once the failure surface is reached.

And the failure equation is expressed in terms of the alternate stress invariant (p, q, and θ) given by

$$p = \frac{1}{3} \sigma_{ii}$$

$$\begin{split} S_{ij} &= \sigma_{ij} - p \cdot \delta_{ij} \\ J_2 &= \frac{1}{2} S_{ij} S_{ij} \\ J_3 &= \frac{1}{3} S_{ij} S_{jk} S_{ki} \\ q &= \sqrt{3J_2} \\ \theta &= \frac{1}{3} Sin^{-1} \left(-\frac{27}{2} \frac{J_3}{q^3} \right) \end{split} \tag{3.1}$$

where $\sigma_{\scriptscriptstyle{ij}}$ is the total stress tensor and $S_{\scriptscriptstyle{ij}}$ is the deviatoric stress tensor.

3.1.2 Elastic Stress-Strain Relationship

The incremental elastic constitutive law can be expressed in the following matrix form:

$$\{d\sigma\} = [D^e] \{d\varepsilon^e\}$$
 (3.2)

where

 $\{d\sigma\}$ Stress increment

 $[D^e]$ Elastic stress-strain matrix

 $\{d\epsilon^e\}$ Elastic strain increment

3.1.3 Failure Surface

The failure surface is described by the following equation:

$$F(p, q, \theta) = q - ((\alpha + \beta p)^n + \kappa) R(\theta) = 0$$
(3.3)

The expression for $R(\theta)$ in Equation 3.3 is given by

$$R(\theta) = \frac{x (\sqrt{3} \cos\theta + \sin\theta) + (2k-1) [(2 + \cos 2\theta + \sqrt{3} \sin 2\theta) x + 5k^2 - 4k]^{1/2}}{[x (2 + \cos 2\theta + \sqrt{3} \sin 2\theta) + (1 - 2k)^2]}$$

(3.4)

where

$$\left(-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}\right)$$

 $x = (1-k^2)$

k = the ratio of the shear strength in triaxial extension to the shear strength in triaxial compression at the same mean pressure

The function $R(\theta)$ describes the shape of the yield surface, as projected in the π plane (octahedral plane). Figure 3.1 and 3.2 show the influence of the parameter k on the shape of the yield surface. k is the ratio of the shear strength in triaxial extension to the shear strength in triaxial compression at the same mean pressure. k is a measure of the influence of the intermediate principal stress on the yield surface and can vary from 0.5 to 1.0. When k is equal to unity, $R(\theta)$ is circular, indicating a Drucker-Prager or Von Mises failure model. When k is less than unity, $R(\theta)$ is a smooth cornered approximation to the Mohr-Coulomb failure envelope.

The parameter n in Equation 3.3 determines the shape of the yield surface in the p-q plane. For n=0, the shear strength is constant with respect to the mean pressure and the strength envelope reduces to the Von Mises or Tresca yield surface. For n=1/2, the strength envelope represents Hoek and Brown (1982) failure surface. This nonlinear failure model is a multidimensional generalization of the original one-dimensional axisymmetric Hoek and Brown model which is based on extensive laboratory and field data (Kim, Piepenburg and Merkle, 1986).

For n=1, shear strength is linearly proportional to the mean pressure and the strength envelope in the p-q plane is representative of the Drucker-Prager or Mohr-Coulomb failure surface.

The parameters α , β and κ of Equation 3.3 define the failure envelope in the p-q plane. They can be determined from laboratory tests. Recommended relationships for determining these parameters for Von Mises, Hoek and Brown and Mohr-Coulomb type materials are listed in Table 3.1. The empirical material parameters for n=1/2 are tabulated in Table 3.2 for several different rock types as a function of rock quality. Detailed description of rock quality is shown in Table 3.3.

3.1.4 Flow Rule

A variable dilatancy potential function, G, is defined such as

$$\frac{\partial \mathbf{G}}{\partial \mathbf{p}} = \left(\frac{\partial \mathbf{F}}{\partial \mathbf{p}}\right) \mathbf{r}$$

$$\frac{\partial \mathbf{G}}{\partial \mathbf{q}} = \frac{\partial \mathbf{F}}{\partial \mathbf{q}}$$

$$\frac{\partial \mathbf{G}}{\partial \theta} = \frac{\partial \mathbf{F}}{\partial \theta}$$
(3.5)

where r is a dilatancy parameter ($0 \le r \le 1$)

= 0 No plastic volume change = 1 Associated flow

Thus, in general,

$$\{d\epsilon^p\} = d\lambda \{g\} \tag{3.6}$$

$$\{g\} = \left\{\frac{\partial G}{\partial \sigma}\right\}$$

3.1.5 Consistency Equation

During yielding , the consistency equation forces the stress to move along the failure surface $% \left(1\right) =\left(1\right) \left(1\right)$

$$dF = \{a\}^T \{d\sigma\} = 0 \tag{3.7}$$

where

$$\{\mathbf{a}\} = \left\{\frac{\partial \mathsf{F}}{\partial \sigma}\right\} \tag{3.8}$$

3.1.6 Incremental Elasto-Plastic Constitutive Law

Total strain is defined as the sum of elastic and plastic strains

$$\{d\epsilon\} = \{d\epsilon^{e}\} + \{d\epsilon^{p}\}$$
 (3.9)

Substituting Equation 3.9 into 3.2, we have

$$\{d\sigma\} = [D^e] (\{d\epsilon\} - \{d\epsilon^p\})$$
(3.10)

From the flow rule defined in Equation 3.6, we can rewrite Equation 3.10 as

$$\{d\sigma\} = [D^{\circ}] \{d\epsilon\} - d\lambda [D^{\circ}] \{g\}$$
(3.11)

Substituting Equation 3.11 into 3.7 and solving for $d\lambda$, we obtain

$$d\lambda = \frac{\{a\}^T [D^e] \{d\epsilon\}}{\{a\}^T [D^e] \{g\}}$$
(3.12)

Back substituting Equation 3.12 into Equation 3.11, the stress increment is directly related to the total strain increment as follows:

$$\{d\sigma\} = [D^{ep}] \{d\varepsilon\}$$
 (3.13)

where

$$[D^{ep}] = [D^{e}] - \frac{[D^{e}] \{g\} \{a\}^{T} [D^{e}]}{\{a\}^{T} [D^{e}] \{g\}}$$
(3.14)

3.1.7 Calculation of {a}

Differentiating the yield function with respect to p, q, and θ , we have

$$\frac{\partial F}{\partial p} = -n (\alpha + \beta p)^{n-1} \cdot \beta \cdot R(\theta)$$

$$\frac{\partial F}{\partial q} = 1$$

$$\frac{\partial F}{\partial \theta} = -\{(\alpha + \beta p)^n + \kappa\} \frac{\partial R(\theta)}{\partial \theta}$$
(3.15)

$$\begin{split} \frac{\partial R}{\partial \theta} &= \frac{1}{R_D} \left[\frac{\partial R_N}{\partial \theta} - R(\theta) \frac{\partial R_D}{\partial \theta} \right] \\ R_N &= x(\sqrt{3} \cos\theta + \sin\theta) + (2k-1) \left[(2 + \cos 2\theta + \sqrt{3} \sin 2\theta) x + 5k^2 - 4k \right]^{1/2} \\ R_D &= x(2 + \cos 2\theta + \sqrt{3} \sin 2\theta) + (1 - 2k)^2 \\ \frac{\partial R_N}{\partial \theta} &= x(\cos\theta - \sqrt{3} \sin\theta) + \frac{x(2k-1) (\sqrt{3} \cos 2\theta - \sin 2\theta)}{\left[x(2 + \cos 2\theta + \sqrt{3} \sin 2\theta) + 5k^2 - 4k \right]^{1/2}} \\ \frac{\partial R_D}{\partial \theta} &= 2x(\sqrt{3} \cos 2\theta - \sin 2\theta) \end{split}$$
(3.16)

The derivative of the yield function with respect to stress can be written in general 3-dimensional condition as

$$\{\mathbf{a}\} = \frac{\partial F}{\partial \mathbf{p}} \left\{ \frac{\partial \mathbf{p}}{\partial \sigma} \right\} + \frac{\partial F}{\partial \mathbf{q}} \left\{ \frac{\partial \mathbf{q}}{\partial \sigma} \right\} + \frac{\partial F}{\partial \boldsymbol{\theta}} \left\{ \frac{\partial \boldsymbol{\theta}}{\partial \sigma} \right\}$$
(3.17)

$$\left\{ \frac{\partial p}{\partial \sigma} \right\} = \frac{1}{3} < 1 \ 1 \ 1 \ 0 \ 0 \ 0 >^T$$

$$\left\{ \frac{\partial \theta}{\partial \sigma} \right\} = \frac{9}{2 q^3 \cos 3\theta} \left(\frac{3J_3}{q} \left\{ \frac{\partial q}{\partial \sigma} \right\} - \left\{ \frac{\partial J_3}{\partial \sigma} \right\} \right)$$

$$\left\{ \frac{\partial q}{\partial \sigma} \right\} = \frac{3}{2q} < S_x \quad S_y \quad S_z \quad 2 \, \sigma_{x\,y} \quad 2 \, \sigma_{y\,z} \quad 2 \, \sigma_{x\,z} >^T$$

$$\left\{ \begin{aligned} \frac{\partial J_3}{\partial \sigma} \right\} &= \left\{ \begin{array}{l} S_y S_z - \sigma_{yz}^2 + \frac{1}{9} \, q^2 \\ S_x S_z - \sigma_{xz}^2 + \frac{1}{9} \, q^2 \\ S_x S_y - \sigma_{xy}^2 + \frac{1}{9} \, q^2 \\ 2 \, \left(- S_z \sigma_{xy} + \sigma_{yz} \sigma_{xz} \, \right) \\ 2 \, \left(- S_x \sigma_{yz} + \sigma_{xz} \sigma_{xy} \, \right) \\ 2 \, \left(- S_y \sigma_{xz} + \sigma_{xy} \sigma_{yz} \, \right) \\ \end{array} \right\}$$

$$\{\sigma\}^T = \langle \sigma_x \ \sigma_y \ \sigma_z \ \sigma_{xy} \ \sigma_{yz} \ \sigma_{xz} \rangle$$

$$\{\epsilon\}^T \ = \ < \epsilon_x \quad \epsilon_y \quad \epsilon_z \quad \gamma_{xy} \quad \gamma_{yz} \quad \gamma_{xz} >$$

$$\gamma_{xy} = 2 \epsilon_{xy}$$
 $\gamma_{yz} = 2 \epsilon_{yz}$ $\gamma_{xz} = 2 \epsilon_{xz}$

Table 3.1 Material Constants in Grenerlized Hoek and Brown Model

	n = 0 Von Mises or Tresca	n = 1/2 Hoek and Brown	n = 1 Mohr-Coulomb or Drucker-Prager
α	N/A	$\left(\frac{m^2}{36} + s\right) \sigma_c^2$	1000
β	N/A	m σ _c	<u>6 sinφ</u> (3 - sinφ)
К	q′ - 1	$rac{1}{6}$ m σ_c	$\frac{3(1-\sin\phi)}{(3-\sin\phi)} \sigma_{c}^{-} 1000$

q' $\sigma_{\scriptscriptstyle 1}$ - $\sigma_{\scriptscriptstyle 3}$

where $\sigma_{\scriptscriptstyle 1}$ and $\sigma_{\scriptscriptstyle 3}$ are major and minor pricipal stresses at failure.

= Unconfined compressive strength σ_{c}

= Internal friction angle

Hoek and Brown's material constants m,s =

as tabulated in Table 3.2.

Table 3.2 Hoek and Brown Material Parameters (m, s)

Rock Type Rock Quality	Dolomite, Limestone & Marble	Mudstone, Siltstone, Shale and Slate (normal to cleavage)	Sandstone and Quartzite	Andesite, Dolerite & Rhyolite	Amphibolite, Gabbro, Gneiss, Norite and Quartz-Diorite
Intact CSIR rating = 100 NGI rating = 150	m = 7	10.0	15.0	17.0	25.0
	s = 1	1.0	1.0	1.0	1.0
Very Good Quality CSIR rating = 85 NGI rating = 100	3.5 0.1	5.0 0.1	7.5 0.1	8.5 0.1	12.5 0.1
Good Quality CSIR rating = 65 NGI rating = 10	0.7	1.0	1.5	1.7	2.5
	0.004	0.004	0.004	0.004	0.004
Fair Quality CSIR rating = 44 NGI rating = 1	0.14	0.20	0.3	0.34	0.5
	0.001	0.0001	0.0001	0.0001	0.0001
Poor Quality CSIR rating = 23 NGI rating = 0.1	0.04	0.05	0.08	0.09	0.13
	0.00001	0.00001	0.00001	0.00001	0.00001
Very Poor Quality CSIR rating = 3 NGI rating = 0.01	0.007	0.01	0.015	0.017	0.025
	0.0	0.0	0.1	0.0	0.0

Table 3.3 Description of Rock Quality in Table 3.2

Intact Rock Samples	Laboratory size specimens free from joints
Very Good Quality Rock Mass	Tightly interlocking undisturbed rock with unweathered joints at 1 to 3m
Good Quality Rock Mass	Fresh to slightly weathered rock, slightly disturbed with joints at 1 to 3m
Fair Quality Rock Mass	Several sets of moderately weathered joints spaced at 0.3 to 1m
Poor Quality Rock Mass	Numerous weathered joints at 30 to 500mm with sane gouge. Clean compacted waste rock
Very Poor Quality Rock Mass	Numerous heavily weathered joints spaced < 50m with gouge. Waste rock with fines

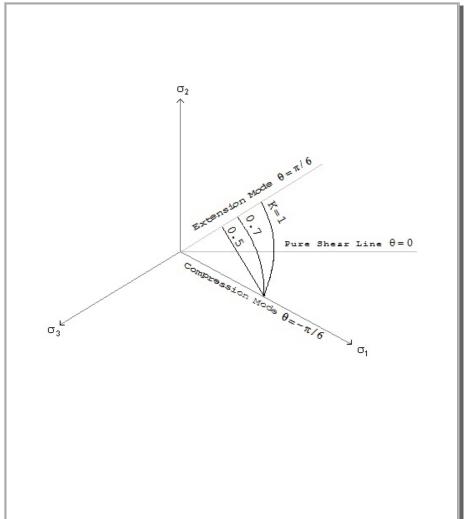
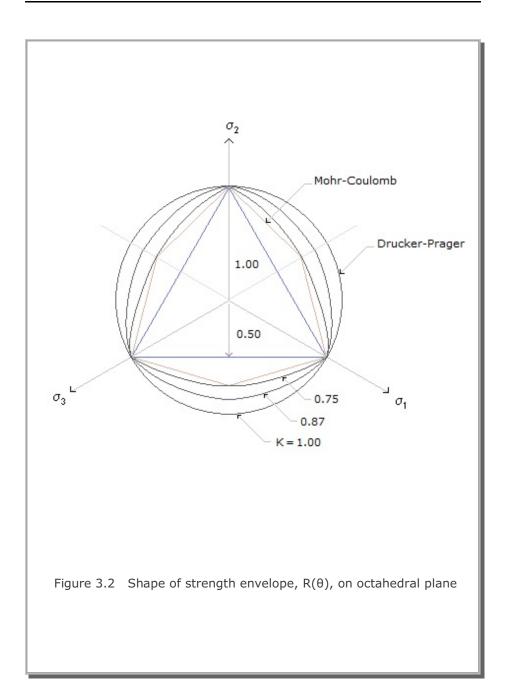



Figure 3.1 Shape of strength envelope, $R(\theta)$, on octahedral plane

3.2 Single Hardening Elasto-Plastic Model

3.2.1 Introduction

The Single Hardening Elasto-Plastic Model is a 3 invariant, single hardening surface, material model representing the drained response of the porous skeleton. The Single Hardening Model is the simplified version of the existing three invariant model which has been continuously upgraded since 1985 and reported by Merkle and Dass (1985), Dass and Merkle (1986), and Blouin, Chitty, Rauch, and Kim (1990). The major change from the existing three invariant model is the replacement of two hardening yield surfaces by the single hardening yield surface developed by Lade (1990). The advantages of this new model over the three invariant model include requirement of a lesser number of material constants, simple procedures of material parameter determination, and computational efficiency.

The Single Hardening Elasto-Plastic Model is a non-associated, isotropic, work hardening, elasto-plastic model with a single hardening yield surface bounded by a failure envelope, as shown in Figure 3.3. The yield surface has the shape of a teardrop with its pointed apex at the origin in principal stress space. The failure surface is a hyperboloid with its apex on the hydrostatic axis in the principal stress space. The shape of both yield and failure surfaces in the π -plane, perpendicular to the hydrostatic axis (see Figure 3.3), is a triple ellipse in polar coordinates.

3.2.2 Notations

Positive signs are used throughout this section to represent compression. Only those symbols which are not explicitly defined in the main text will be described below.

- P_a Atmospheric pressure
- $\{\epsilon\}$ Total strain vector
- $\{\epsilon_e\}$ Elastic strain vector
- $\{\epsilon_u\}$ Plastic strain vector associated with failure surface

 $\{\sigma\}$ Stress vector

 $\begin{array}{ll} \sigma_{oct} & & \text{Octahedral normal stress} \\ \tau_{oct} & & \text{Octahedral shear stress} \end{array}$

v Poisson's ratio

3.2.3 Total Strain Formulation

In general, the total strain is comprised of the elastic component and two plastic components related to the yield and failure surfaces as given respectively by:

$$\{d\epsilon\} = \{d\epsilon_{e}\} + \{d\epsilon_{u}\}$$
(3.18)

3.2.4 Elastic Response

At stress states inside the yield surfaces, the skeleton response is treated as nonlinear elastic and governed by the previous maximum peak stress. Two options are available for modeling the elastic response within the framework of the three invariant skeleton model: the modified elastic model and the Lade and Nelson elastic model. In both options, Poisson's ratio is assumed to remain constant.

Modified elastic model

During virgin unloading, the elastic bulk modulus is given by:

$$K = \frac{K_{ur} P_a}{3(1-2v)} \left[\frac{\sigma_{oct}}{P_a} \right]^n \ge K_i$$
(3.19)

where K_{ur} and n are material constants obtained in the parameter fitting. K_i represents the initial bulk modulus at low pressures and is necessary for modeling the behavior of rock-type materials that have a definite initial elastic behavior. In uncemented soils, K_i can be taken as a very small value. The initial bulk modulus is also used to determine the initial position of the yield surface by defining the initial elastic range.

During unloading or reloading, the skeleton modulus is described by one of two segments as depicted in Figure 3.4. Between the previous peak mean stress, $\sigma_{\text{oct,max}}$, and the transition into the nonlinear segment at $\sigma_{\text{oct,b}}$, the elastic bulk modulus is constant and is given by:

$$K = K_1 = \frac{K_{ur} P_a}{3(1-2v)} \left[\frac{\sigma_{oct, max}}{P_a} \right]^n$$
 (3.20)

The transition into the nonlinear segment occurs at:

$$\sigma_{\text{oct.b}} = \lambda \, \sigma_{\text{oct.max}}$$
 (3.21)

where λ is a model parameter. At mean stresses less than $\sigma_{\text{oct, b}}$ the nonlinear bulk modulus is given by:

$$\mathbf{K} = \mathbf{K}_{1} \left[1 - \gamma \left[\frac{\beta}{\gamma} \right]^{\frac{\sigma_{\text{oct,b}}}{\sigma_{\text{oct,b}}}} \right]$$
 (3.22)

Referring to Figure 3.4, the model parameters γ and β are given by:

$$\gamma = 1 - \frac{K_o}{K_1} \tag{3.23}$$

where K_0 is the bulk modulus at zero pressure and

$$\beta = 1 - \frac{K_*}{K_1} \tag{3.24}$$

where K_* is the bulk modulus at one quarter of the transition pressure $\sigma_{\text{oct,b}}$. While this formulation allows for relatively accurate curve fitting of observed soil response, the model has three disadvantages:

- 1. For certain closed-loop stress/strain paths, the model may violate the energy conservation principle;
- 2. Unloading at low pressures could potentially generate expansive volumetric strains; and
- 3. At the transition pressure, $\sigma_{oct,b}$ the modulus is not continuous.

Lade and Nelson elastic model

The second elastic model option is based on a relationship derived by Lade and Nelson (1987). This formulation is continuous and was derived from the energy conservation principle. Lade and Nelson's model can be expressed as:

$$K = \frac{K_{ur} P_a}{3^{n+1} (1-2v)} \left[\left[\frac{3 \sigma_{oct}}{P_a} \right]^2 + \frac{6(1+v)}{1-2v} \frac{J_2^1}{P_a^2} \right]^{\frac{n}{2}} \ge K_i$$
 (3.25)

where the parameters K_{ur} , n, and K_i are the same as used in Equation 3.19. Since this model is fit strictly using the slope of an initial unload curve, it can be difficult to closely match the observed characteristics of an unload cycle.

Fitting

Poisson's ratio (v) for a given material can be determined in a number of ways using unload/reload data which represent the elastic response of the skeleton. Lade and Nelson (1987) recommended obtaining Poisson's ratio directly from strain measurements in triaxial compression unload/reload cycles, right after stress reversal at hydrostatic conditions where:

$$v = -\frac{\varepsilon_{\rm r}}{\varepsilon_{\rm a}} = \frac{1}{2} \left[1 - \frac{\varepsilon_{\rm v}}{\varepsilon_{\rm a}} \right]$$
 (3.26)

where

 ϵ_{a} Axial strain ϵ_{r} Radial strain ϵ_{r} Volume strain

In addition, since the elastic response is completely defined by any two independent elastic parameters, Poisson's ratio can be obtained from the bulk modulus, (K), measured in a hydrostatic compression unload, and any other elastic modulus. For example, a triaxial compression unload yields the shear modulus (G), an unconfined compression unload gives the

Young's modulus (E), and an uniaxial strain unload produces the constrained modulus (M). Any one of these parameters can be used with the bulk modulus to obtain Poisson's ratio:

$$v = \frac{3K - 2G}{2(3K + G)}$$
 (3.27)

$$v = \frac{3K - E}{6K} \tag{3.28}$$

$$v = \frac{3K - M}{3K + M} \tag{3.29}$$

To obtain the elastic model parameters K_{ur} and n, Equation 3.19 is rewritten in the form:

$$\log \left[\frac{3K(1-2v)}{P_a} \right] = \log K_{ur} + n \log \left[\frac{\sigma_{oct}}{P_a} \right]$$
 (3.30)

Values of K and σ_{oct} from the initial unloading response at various pressures in the hydrostatic compression test, are then plotted as log $(3K(I-2v)/P_a)$ versus log (σ_{oct}/P_a) . A least squares linear regression is then applied in log-log space. The parameter n is the slope of this line, while K_{ur} is the intercept where (σ_{oct}/P_a) is 1.0. The parameters λ , γ , and β for the modified elastic unload model are determined from a single unload/reload cycle in the hydrostatic compression test as depicted in Figure 3.4. The parameters are computed using Equations 3.21, 3.23, and 3.24.

3.2.5 Failure Surface

The failure surface is a hyperboloid with its apex on the hydrostatic axis in principal stress space as shown in Figure 3.3. The shape of the failure surface in the π -plane, perpendicular to the hydrostatic axis is a triple ellipse in polar coordinates.

The failure criteria are given by:

$$f_{u} = \frac{\tau_{oct}}{R(\theta)} \left(\frac{m}{P_{a}} + \frac{1}{\overline{\sigma}_{oct}} T \right) - \eta_{1} = 0$$
(3.31)

where

$$R(\theta) = \frac{2K}{(1 + K) + (1 - K) \sin 3\theta}$$
 (3.32)

$$\overline{\sigma}_{oct} = \sigma_{oct} + T$$
 (3.33)

 σ_{oct} Octahedral normal stress

τ_{oct} Octahedral shear stress

 θ Lode angle

T Tensile strength

K The ratio of extensive to compressive strength at given mean pressure

m and η_1 are the failure constants which can be determined from the following fitting procedure. In triaxial compression mode, $R(\theta)=1$ and Equation 3.31 reduces to:

$$\frac{\overline{\sigma}_{\text{oct}}}{\tau_{\text{oct}}} = \frac{1}{\eta_1} + \frac{m}{\eta_1} \left(\frac{\overline{\sigma}_{\text{oct}}}{P_a} \right)$$
(3.34)

By plotting the failure stress points from each triaxial compression test in terms of $\bar{\sigma}_{\text{oct}}/\tau_{\text{oct}}$ versus $\bar{\sigma}_{\text{oct}}/P_{\text{a}}$, a straight line fit will yield an intercept of $1/\eta_1$ and a slope of m/η_a . Then the parameter η_1 is obtained simply by taking the inverse value of intercept and the parameter m is obtained by multiplying the slope by η_1 .

3.2.6 Plastic Response Related to Yield Surface

Both yield and potential equations are based on Lade's single hardening model (Lade, 1990) which replaces previous two yield surface model (Lade, 1977).

To be consistent with the failure equation described in the previous subsection, however, Lade's equations were modified such that the shape of both yield and potential surfaces in the π -plane consists of triple ellipse given by Equation 3.32.

The yield equation is composed of the stress function $(f_{\rho}{}')$ and the hardening function $(f_{\rho}{}'')$.

$$f_p = f_{p'}(I_1, J_2, \theta) - f_{p''}(W_p) = 0$$
 (3.35)

The stress function is given by:

$$\mathbf{f_{p'}} = \left(\psi_1 \frac{\overline{\mathbf{I}_1}^3}{\overline{\mathbf{I}_3}} - \frac{\overline{\mathbf{I}_1}^2}{\overline{\mathbf{I}_2}}\right) \left[\frac{\overline{\mathbf{I}_1}}{p_a}\right]^h - e^q$$
(3.36)

where the stress quantities I_1 , I_2 , and I_3 are defined by:

$$\overline{\mathbf{I}}_1 = \mathbf{I}_1 + 3\mathbf{T} \tag{3.37}$$

$$\overline{I}_2 = \left(\frac{J_2}{R(\theta)^2}\right) - \frac{\overline{I}_1^3}{3} \tag{3.38}$$

$$\overline{I}_3 = 2\left[\frac{J_2}{3R(\theta)^2}\right]^{\frac{3}{2}} - \frac{\overline{I}_1}{3}\left(\frac{J_2}{R(\theta)^2}\right) + \frac{\overline{I}_1^3}{27}$$
 (3.39)

Note that I_1 is the first invariant of the total stress tensor, J_2 is the second invariant of deviatoric stress tensor and $R(\theta)$ is given by Equation 3.32. The variable q in Equation 3.36 is related to the shear stress level S as:

$$q = \frac{\alpha \cdot s}{1 - (1 - \alpha) \cdot s} \tag{3.40}$$

The shear stress level is defined as:

$$S = \frac{\frac{\tau_{oct}}{R_{(\theta)}} \left(\frac{m}{P_a} + \frac{1}{\overline{\sigma}_{oct}} \right)}{\eta_1}$$
(3.41)

The parameter q has the value of zero along the hydrostatic axis and unity along the failure surface. Thus, the material constants which are specific to the stress function are ψ_1 , h and α . Determination of these material constants will be described at the end of this subsection.

The hardening function is given by:

$$f_{\mathbf{p}}^{\prime\prime} = \left[\frac{W_{\mathbf{p}}}{\mathbf{D} \cdot \mathbf{P_{\mathbf{a}}}} \right]^{\frac{\mathbf{h}}{\mathbf{p}}} \tag{3.42}$$

where the plastic work is expressed as:

$$W_{p} = \int \{\sigma\}^{T} \{de_{p}\}$$
 (3.43)

and the constant D is related to the isotropic hardening constants (C and P) as:

$$D = \frac{C}{(27\psi_1 + 3)^{P/h}}$$
 (3.44)

The constant ψ_1 in Equation 3.36 and 3.44 is assumed to depend on the type of material.

Material Type	Ψ1
Sand	0.018
Clay	0.006
Mortar	0.004
Sandstone	0.0013
Concrete	0.0015
Reinforced Concrete	0.0007

It should be noted that the values of ψ_1 in the above table are based on Lade's data (Kim and Lade, 1988) but ψ_1 does not have any influence on the shape of yield surfaces on the π -plane.

Isotropic hardening constants (C and P) can be determined by fitting to the isotropic compression test. For the isotropic compression loading, Equation 3.35 reduces to:

$$\frac{\mathbf{W_p}}{\mathbf{P_a}} = \mathbf{C} \left[\frac{\mathbf{I_1}}{\mathbf{P_a}} \right]^{\mathbf{p}} \tag{3.46}$$

Taking the logarithm of both sides of Equation 3.46 yields

$$\log_{10}\left(\frac{W_p}{P_a}\right) = \log_{10}C + P \log_{10}\left(\frac{I_l}{P_a}\right)$$
(3.47)

so that the parameters C and P can be found from a log-log plot of $(W_{\text{\tiny D}}/P_{\text{\tiny a}})$ versus $(I_{\text{\tiny 1}}/P_{\text{\tiny a}}).$

Yield constants (h and α) can be obtained by fitting to the triaxial compression test data. Along the isotropic and triaxial compression stress paths, Equation 3.35 has the same form as the Lade's single hardening yield equation so that the same procedure as described by Lade and Kim, 1988 can be used to determine yield constants (h and α).

The yield constant h can be obtained from:

$$h = \frac{\log_{10} \left(\frac{\left(\Psi_1 \frac{I_{1F}^3}{I_{2F}} - \frac{I_{1F}^2}{I_{2F}} \right) e}{27 \psi_1 + 3} \right)}{\log_{10} \left(\frac{I_{1H}}{I_{1F}} \right)}$$
(3.48)

where I_{IF} , I_{2F} , and I_{3F} are the first, second and third invariant of the total stress tensor, respectively, at the failure point of triaxial compression test; I_{IH} is the first invariant of the total stress tensor in the hydrostatic compression test, measured at the same plastic work as for the failure point of triaxial compression test.

The yield constant α can be determined from

$$\alpha = \frac{1}{4} \frac{q_{80}}{1 - q_{80}} \tag{3.49}$$

Where q_{80} is value of q at the stress level S= 0.8 and is obtained from

$$q = l_n \frac{\left[\frac{W_p}{DP_a}\right]^{\frac{h}{p}}}{\left(\psi_1 \frac{{I_1}^3}{I_3} - \frac{{I_1}^2}{I_2}\right) \left[\frac{I_1}{P_a}\right]^{h}}$$
(3.50)

The potential equation is expressed in terms of stress invariants as

$$g_{p} = \left(\psi_{1} \frac{\overline{I}_{1}^{3}}{\overline{I}_{2}} - \frac{\overline{I}_{1}^{2}}{\overline{I}_{2}} + \psi_{2}\right) \left[\frac{\overline{I}_{1}}{P_{a}}\right]^{\mu}$$
(3.51)

Material constants (ψ_2 and μ) which are specific to the potential surface can be determined in the same way as for Lade's single hardening model (Kim and Lade, 1988).

For the triaxial compression test, the potential constants (ψ_2 and μ) are related to the stresses and the plastic strains as

$$\xi_{y} = \frac{1}{\mu} \xi_{x} - \Psi_{2} \tag{3.52}$$

where

$$\xi_{x} = \psi_{1} \frac{I_{1}^{3}}{I_{3}} - \frac{I_{1}^{2}}{I_{2}} \tag{3.53}$$

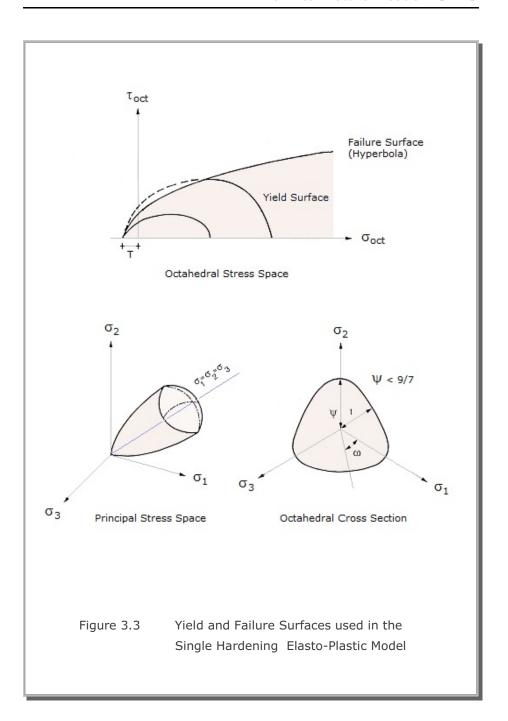
$$\xi_{y} = \frac{1}{1+v_{p}} \left(\frac{I_{1}^{3}}{I_{2}^{2}} \left(\sigma_{a} + \sigma_{r} + 2v_{p}\sigma_{r} \right) + \psi_{1} \frac{I_{1}^{4}}{I_{2}^{2}} \left(\sigma_{a}\sigma_{r} + v_{p}\sigma_{r}^{2} \right) \right)$$

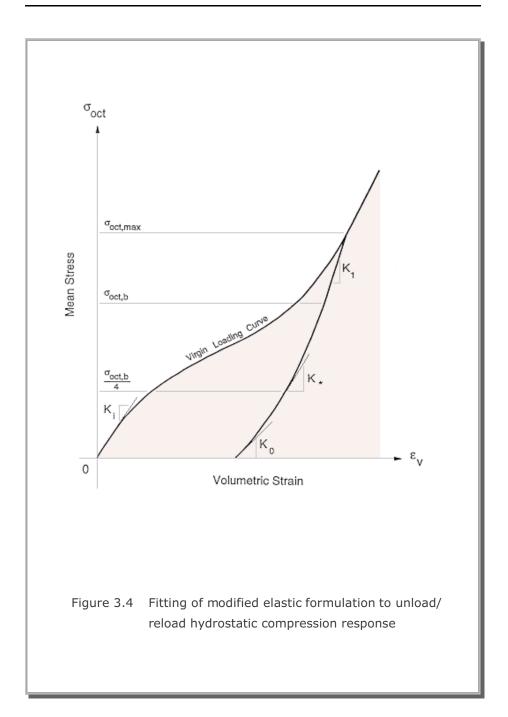
$$-3\Psi_1 \frac{{I_1}^3}{{I_3}} + 2\frac{{I_1}^2}{{I_2}} \tag{3.54}$$

and

$$v_{\mathbf{p}} = -\frac{\varepsilon_{\mathbf{r}}^{\mathbf{p}}}{\varepsilon_{\mathbf{a}}^{\mathbf{p}}} \tag{3.55}$$

Note that σ_a and σ_r are the axial and radial stress, respectively, and $\epsilon_a{}^p$ and $\epsilon_r{}^p$ are the axial and radial plastic strain, respectively. As described in Equation 3.52, the constants ψ_2 and μ now can be determined by the least square fit of a series of ξ_x and ξ_v data set.


The potential surface in Equation 3.51 is mainly used to compute the direction of the plastic strain increment during yielding.


$$\{d\varepsilon_{\mathbf{p}}\} = d\lambda_{\mathbf{p}} \left\{ \frac{\partial g_{\mathbf{p}}}{\partial \sigma_{ij}} \right\}$$
 (3.56)

where $d\lambda_{_{p}}$ is the scalar quantity.

3.2.7 Plastic Response Along the Failure Surface

When materials are hardening along the failure surface, the yield surface is crossing over the failure surface so that the state of stresses should satisfy both yield and failure equations. For simplicity, it has been assumed that there are no plastic volume changes and no strain softenings associated with the failure surface. However, there will be plastic volume changes associated with the yield surface along the failure surface. The exact method to derive the elasto-plastic stressstrain matrix $[D_{ep}]$ is presented by Merkle and Dass (1985).

3.3 JWL High Explosive Model

JWL High Explosive Model represents JWL equation of state (Jones, Wilkens, and Lee, 1968).

JWL is a relatively simple pressure-volume-energy equation of state developed to predict the adiabatic expansion of detonation products. JWL equation of state is given by:

$$\overline{P} = A \left(1 - \frac{\omega}{R_1 V} \right) e^{-R_1 V} + B \left(1 - \frac{\omega}{R_2 V} \right) e^{-R_1 V} + \frac{\omega E}{V}$$
(3.57)

where \bar{p} is the pressure, V is the relative volume (ρ_o/ρ) , and E is the internal energy density. And A, B, R_1 , R_2 , and ω are material constants.

To simulate progress of chemical reaction, Burn Fraction (BF) is used.

$$BF = \frac{(t - t_b) C_d}{B_s \ell}$$
 (3.58)

where

t Current time

t_b Detonation time

C_d Detonation velocity

B_s Constant used to spread the detonation front (usually 2.5)

Element characteristic length

The value of Burn Fraction is limited as follows:

For
$$t \leq t_b$$
,

$$BF = 0 (3.59)$$

For $t > t_b + B_s \ell / C_d$,

$$BF = 1 \tag{3.60}$$

Thus, the actual pressure (P) developing in the element is obtained by combining Equations 3.57 and 3.58. That is

$$P = BF \cdot \overline{P} \tag{3.61}$$

The following JWL model parameters represents the properties of typical ANFO:

- Α 20 GPa В 0.2 GPa 3.7 $R_{\scriptscriptstyle 1}$ R_2 0.9 0.2 Е 7.08 GPa (Initial chemical energy)
- C_d 3048 m/s
- 830 Kg/m³ (Initial density)

3.4 Modified Cam Clay Model with Creep 3.4.1 Introduction

Long term deformations of embankments on saturated clay soils are generally associated with consolidation and creep effects. Consolidation settlements are primarily due to the expulsion of pore water while creep strains are time-dependent deformations taking place under constant stress.

This section presents detailed derivation of constitutive relations when both plastic and creep strains develop. Modified Cam Clay Model is used to represent the elasto-plastic behavior of clay soils. In computing creep strains, averaging scheme is introduced such that volumetric scaling governs at low stress ratio and deviatoric scaling governs at high stress ratio.

In this section, the elasto-plastic matrix is derived for the Modified Cam Clay Model incorporating Singh-Mitchell creep equations.

3.4.2 Yield and Failure Equations

The failure surface (critical state line) of the Modified Cam Clay Model is given by

$$q = M P' \tag{3.62}$$

where M is the failure constant and P^\prime and q are the alternate stress invariants given by

$$P' = \frac{1}{3} \sigma'_{ij} \delta_{ij}$$

$$q = \sqrt{3J_2}$$

$$J_2 = \frac{1}{2} S_{ij} S_{ij}$$

$$S_{ij} = \sigma'_{ij} - P' \delta_{ij}$$

$$(3.63)$$

The yield surface of the Modified Cam Clay Model is given by

$$F = \frac{q^2}{M^2} + P'(P' - P'_0) = 0$$
 (3.64)

where $P_{\circ}{}'$ is the preconsolidation pressure which grows not only with plastic volumetric strain but also with time.

3.4.3 Elastic Stress-Strain Relationship

The elastic tangent bulk modulus is based on the recompression or swelling response in isotropic compression test.

$$B_{k} = \frac{2.3 (1 + e_{o})}{C_{r}} P'$$
 (3.65)

Where

e_o Initial void ratio

C_r Recompression or swelling index

Assuming the constant Poisson's ratio (υ), the elastic tangent shear modulus would be

$$G = 3.45 \frac{(1-2v)}{(1+v)} \frac{(1+e_o)}{C_r} P'$$
(3.66)

With these effective mean pressure dependent elastic tangent moduli, the incremental elastic constitutive law can be expressed in the following matrix form:

$$\{d\sigma'\} = [D^e] \{d\epsilon^e\}$$
 (3.67)

where

3.4.4 Plastic Strain Increment

Plastic strain increment is assumed to be normal to the yield surface.

$$\{d\epsilon^{p}\} = d\lambda_{p} \left\{ \frac{\partial F}{\partial \sigma'} \right\}$$
 (3.68)

where

 $\{d\epsilon^p\}$ Plastic strain increment

 $d\lambda_{_{p}} \qquad \qquad \text{Proportional constant for plastic strain}$

 $\{\partial F/\partial \sigma'\}$ Derivative of yield surface with respect to stress

3.4.5 Creep Strain Increment

Creep strain increment is assumed to be normal to the equivalent yield surface.

$$\{d\epsilon^c\} = d\lambda_c \left\{ \frac{\partial F_e}{\partial \sigma'} \right\} dt$$
 (3.69)

where

 $\begin{array}{ll} \{d\epsilon^c\} & \text{Creep strain increment} \\ d\lambda_c & \text{Proportional constant for creep strain} \\ \{\partial F_e/\partial \sigma'\} & \text{Derivative of equivalent yield surface} \\ & \text{with respect to stress} \\ dt & \text{Time increment} \\ \end{array}$

Note that the equivalent yield surface is defined as

$$F_e = \frac{q^2}{M^2} + P'(P' - P_e') = 0$$
 (3.70)

where

$$P_{e}' = \frac{q^{2}}{M^{2} P'} + P'$$
 (3.71)

The proportional constant for creep strain can be computed by averaging both volumetric and deviatoric scaling.

$$d\lambda_c = \frac{\eta}{M} d\lambda_d + \left(1 - \frac{\eta}{M}\right) d\lambda_v$$
 (3.72)

where

 $\begin{array}{ll} \eta & & \text{Stress ratio } (q/p') \\ d\lambda_v & & \text{Volumetric scaling factor} \\ d\lambda_d & & \text{Deviatoric scaling factor} \end{array}$

The volumetric scaling factor is based on the secondary consolidation curve.

$$d\lambda_{v} = \frac{C_{\alpha}}{2.3 (1 + e_{o}) t_{v}} \left(\frac{\partial F_{e}}{\partial P'} \right)^{-1}$$
(3.73)

The volumetric age (t_v) in Equation 3.73 is given by

$$\mathbf{t_{v}} = \mathbf{t_{vi}} \left(\begin{array}{c} \mathbf{P_{o}'} \\ \mathbf{P_{e}'} \end{array} \right) \frac{\mathbf{c_{o}} - \mathbf{c_{r}}}{\mathbf{c_{\alpha}}}$$
 (3.74)

where

 t_{vi} Reference volumetric time

C_c Virgin compression index

 C_{α} Secondary compression coefficient

The deviatoric scaling factor is based on Singh-Mitchell creep equation (1968).

$$d\lambda_{d} = \sqrt{\frac{3}{2}} A e^{\alpha \eta} \left(\frac{t_{di}}{t}\right)^{m} \left(\frac{\partial F_{e}}{\partial \sigma'_{ij}} \frac{\partial F_{e}}{\partial \sigma'_{ij}} - \frac{1}{3} \frac{\partial F_{e}}{\partial P'}\right)^{-1/2}$$
(3.75)

Where

t_{di} Reference deviatoric time

t Current time

A Singh-Mitchell creep parameter

a Singh-Mitchell creep parameter

m Singh-Mitchell creep parameter

3.4.6 Total Strain Increment

Total strain increment consists of elastic, plastic and creep strains.

$$\{d\varepsilon\} = \{d\varepsilon^{e}\} + \{d\varepsilon^{p}\} + \{d\varepsilon^{c}\}$$
(3.76)

3.4.7 Consistency Equation

During the subsequent yielding, the equation forces the stress increment to move on the subsequent yield loci.

$$dF = \left\{ \frac{\partial F}{\partial \sigma'} \right\}^{T} \left\{ d\sigma' \right\} + \frac{\partial F}{\partial P'_{o}} dP'_{o} = 0$$
(3.77)

The preconsolidation pressure increment (dP_o') is related to the plastic volumetric strain increment ($d\epsilon_v^p$) and the time increment (dt).

$$dP_o' = \frac{2.3(1 + e_o)}{(c_c - c_r)} p_o' d\epsilon_v^p + \frac{c_o}{(c_c - c_r)} \frac{p_o'}{t_v} dt$$
 (3.78)

From Equation 3.68 the plastic volumetric strain increment $(d\epsilon_{\!_{v}}{}^{_{p}})$ can be expressed in terms of $d\lambda_{\!_{D}}$

$$d\varepsilon_{v}^{p} = d\lambda_{p} \frac{\partial F}{\partial P'}$$
(3.79)

3.4.8 Evaluation of $d\lambda_{\rm p}$

The elastic strain increment in Equation 3.67 can be expressed in terms of $d\lambda_0$ by combining Equations 3.76 and 3.67.

$$\{d\sigma'\} = [D^e] \left(\{d\epsilon\} - d\lambda_p \left\{ \frac{\partial F}{\partial \sigma'} \right\} - \{d\epsilon^c\} \right)$$
 (3.80)

Substituting Equations 3.78, 3.79 and 3.80 into the Consistency Equation 3.77 and solving for $d\lambda_D$.

$$d\lambda_{p} = \frac{\left\{\frac{\partial F}{\partial \sigma'}\right\}^{T} [D^{e}] (\{d\epsilon\} - \{d\epsilon^{c}\}) + p_{n}}{\left\{\frac{\partial F}{\partial \sigma'}\right\}^{T} [D^{e}] \left\{\frac{\partial F}{\partial \sigma'}\right\} - p_{d}}$$
(3.81)

Where

$$P_{n} = \frac{\partial F}{\partial P_{o}^{\prime}} \frac{P_{o}^{\prime}}{t_{v}} \frac{c_{\alpha}}{(c_{c} - c_{r})} dt$$

$$P_{d} = \frac{\partial F}{\partial P_{o}'} \frac{\partial F}{\partial P'} \frac{(1 + e_{o})}{2.3(c_{c} - c_{r})} P_{o}'$$

3.4.9 Effective Stress Increment

The effective stress increment can be obtained by backsubstituting Equation 3.81 into 3.80.

$$\{d\sigma'\} = [D^{ep}] \{d\epsilon\} - \{d\sigma'_e\}$$
 (3.82)

where the incremental elasto-plastic matrix is expressed as

$$[D^{ep}] = [D^{e}] - \frac{[D^{e}] \left\{ \frac{\partial F}{\partial \sigma'} \right\} \left\{ \frac{\partial F}{\partial \sigma'} \right\}^{T} [D^{e}]}{\left\{ \frac{\partial F}{\partial \sigma'} \right\}^{T} [D^{e}] \left\{ \frac{\partial F}{\partial \sigma'} \right\} - P_{d}}$$
(3.83)

and the stress increment associated with creep is given by

$$\{d\sigma_{c}'\} = [D^{ep}] \{d\varepsilon^{c}\} + \frac{[D^{e}] \left\{\frac{\partial F}{\partial \sigma'}\right\} P_{n}}{\left\{\frac{\partial F}{\partial \sigma'}\right\}^{T} [D^{e}] \left\{\frac{\partial F}{\partial \sigma'}\right\} - P_{d}}$$
(3.84)

3.4.10 Evaluation of Derivatives

$$\frac{\partial F}{\partial P'} = 2P' - P_o'$$

$$\left\{ \frac{\partial P'}{\partial \sigma'} \right\} = \frac{1}{3} < 1 \ 1 \ 1 \ 0 \ 0 \ 0 >^{T}$$

$$\frac{\partial F}{\partial q} = \frac{2q}{M^2}$$

$$\left\{ \frac{\partial q}{\partial \sigma'} \right\} = \frac{3}{2q} \left\{ S_{ij} \right\}$$

$$\frac{\partial F}{\partial P_o'} = -P'$$

3.5 Engineering model

3.5.1 Introduction

The Engineering Model is hypoelastic-perfectly plastic in shear and hypoelastic in compression. A hypoelastic material is one for which the stress increments are homogeneous linear functions of the strain increments. In general, the coefficients in the linear functions depend on the stress. The principal advantages of the Engineering Model are ease of fitting to laboratory or in situ test data, simplicity of shear plasticity formulation, and the simple form of compressive hysteresis, which most soils exhibit. Its principal disadvantages are lack of hysteresis in pure shear at constant volume below the failure surface, and lack of dilatancy because the plastic strain increments are assumed to be normal to the hydrostatic axis. The Engineering Model is completely described by a pressure-volume strain curve for hydrostatic compression and a two-invariant failure surface.

3.5.2 Hydrostatic Response

The hydrostatic response is represented by the incremental elastic (hypoelastic) bulk modulus as a function of current compressive volumetric strain (ϵ_v), maximum past compressive volumetric strain (ϵ_v) and compressive volumetric strain increment (ϵ_v) as shown in Figure 3.5a.

$$K = K (\epsilon_{v}, \epsilon_{vm}, d\epsilon_{v})$$
 (3.85)

Poisson's ratio is also defined for each hydrostat segment.

$$v = v \left(\varepsilon_{v}, \varepsilon_{vm}, d\varepsilon_{v} \right)$$
 (3.86)

The corresponding hypoelastic constrained compression and shear moduli are then computed from the following expressions respectively:

$$M = \frac{3K(1 - v)}{(1 + v)}$$
 (3.87)

and

$$G = \frac{3K(1 - 2v)}{2(1 + v)}$$
 (3.88)

3.5.3 Plastic Shear Response

The failure surface is composed of three segments of conical surfaces as shown in Figure 3.5b, each having an equation of the form:

$$f(I_1, \sqrt{J_2}) = \sqrt{J_2} - (a + bI_1) = 0$$
 (3.89)

The material is assumed to behave incrementally elastically when the stress point lies below the failure surface. When the stress point moves along the failure surface, the material response is assumed to be hypoelastic-perfectly plastic in shear. The plastic strain increments are assumed to be normal to the hydrostatic axis so that there would be no plastic volume changes associated with the failure surface.

The derivation of elasto-plastic stress-strain matrix $[D_{ep}]$ is given by Merkle and Dass (1985).

3.5.4 Parameter Determination

The Engineering Model parameters can be obtained by fitting a series of straight lines to shear strength, hydrostatic compression, and constrained compression or $K_{\scriptscriptstyle 0}$ test data.

The parameters of shear strength envelope shown in Figure 3.5b can be determined by fitting to shear strength data in drained triaxial compression tests which arc expressed as functions of I_1 , and \sqrt{J}_2 .

Note that the values of $I_{_1}$ and $\sqrt{J}_{_2}$ at the failure points of triaxial compression are computed in terms of $\sigma_{_{af}}$ and $\sigma_{_{r}}.$

$$I_1 = \sigma_{af} + 2\sigma_{r} \tag{3.90}$$

and

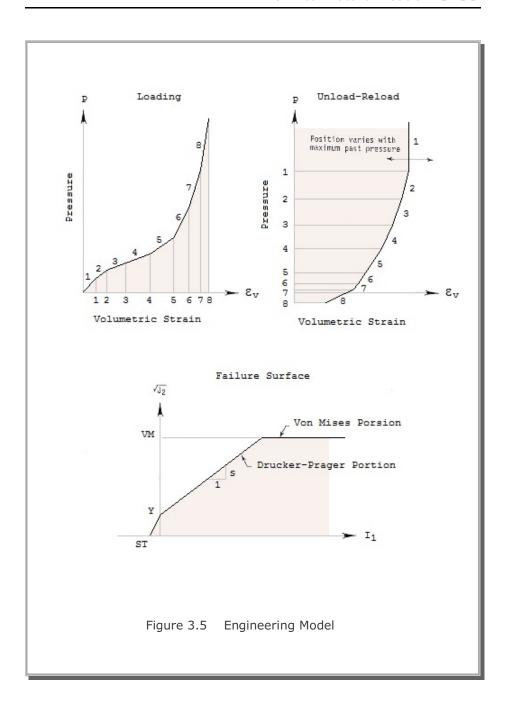
$$\sqrt{J_2} = \frac{\left| \sigma_{af} - \sigma_r \right|}{\sqrt{3}} \tag{3.91}$$

where σ_{a_f} is the axial stress at failure and σ_r is the confining stress.

The hypoelastic bulk modulus and Poisson's ratio in Equations 3.85 and 3.86 respectively can be determined from hydrostatic and constrained compression tests. Then the Poisson's ratio is computed from Equation 3.87.

$$v = \frac{3K - M}{3K + M} \tag{3.92}$$

When K_{\circ} test data are available from constrained compression tests conducted in a triaxial cell, in which the confining stress is measured, Poisson's ratio can be directly computed from:


$$v = \frac{K_o}{1 + K_o} \tag{3.93}$$

where

$$K_{o} = \frac{d\sigma_{r}}{d\sigma_{a}}$$
 (3.94)

When only uniaxial compression test data are available, it is customary to assume Poisson's ratio and to compute bulk modulus from

$$K = \frac{M(1 + v)}{3(1 - v)} \tag{3.95}$$

3.6 Joint Model

3.6.1 Introduction

Joint Model is often used to represent rock joints, faults, and interfaces. Along the joint face, slipping takes place when the shear stress exceeds shear strength and debonding occurs when adjacent two blocks are not in contact.

Joint Model is to be used as a material model for the joint element (see Figure 3.6) as described in Card 5.4 of SMAP-3D User's Manual.

3.6.2 Strain-Displacement Relation

Strains in the joint local coordinate are

$$\{\Delta \varepsilon\} = \begin{cases} \Delta \gamma_{zx}' \\ \Delta \gamma_{zy}' \end{cases}$$

$$\Delta \varepsilon_{zz}'$$
(3.96)

where

Shear strain increment in the plane z'x' $\Delta \gamma_{zx}$ $\Delta \gamma_{zv}$ Shear strain increment in the plane z'y'

Normal strain increment

Local displacement increment, $\{\Delta u'\}$, is related to the global displacement increment, $\{\Delta u\}$, as follows:

$$\{\Delta \mathbf{u}'\} = [\boldsymbol{\beta}] [\Delta \mathbf{u}] \tag{3.97}$$

where

$$\begin{cases} \Delta u' \\ \Delta u' \end{cases} = \begin{cases} \Delta u'_x \\ \Delta u'_y \\ \Delta u'_z \end{cases}$$

$$\{\Delta u\} = \begin{cases} \Delta u_x \\ \Delta u_y \\ \Delta u_z \end{cases}$$

[β] Coordinate transformation matrix

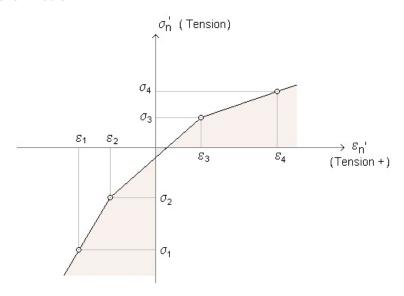
Strain-displacement relation in the local coordinate is given by

$$\{\Delta \varepsilon'\} = \frac{1}{\delta} \{\Delta u'\} \tag{3.98}$$

where δ is the thickness of joint. And global displacement increment can be expressed in terms of global nodal displacement increment, $\{\Delta \bar{\mathbf{u}}\}$, using the shape function matrix, [h], as

$$\{\Delta \mathbf{u}\} = [\mathbf{h}] \{\Delta \overline{\mathbf{u}}\} \tag{3.99}$$

Now, Substituting Equations 3.97 and 3.99 into the Equation 3.98, we obtain


$$\{\Delta \mathbf{e}'\} = [\mathbf{B}] \{\Delta \overline{\mathbf{u}}\} \tag{3.100}$$

where

[B] =
$$\frac{1}{\delta}$$
 [β] [h] (3.101)

3.6.3 Normal Stress-Strain Relation

Normal Stress-strain relation is assumed to be nonlinear elastic as shown below

Thus, Young's modulus (E) is computed as follows:

For $\epsilon_{n}{}'$ < ϵ_{2}

$$\mathsf{E} = \frac{\sigma_2 - \sigma_1}{\varepsilon_2 - \varepsilon_1}$$

For $\epsilon_2 \leq \epsilon_n' < \epsilon_3$

$$\mathsf{E} = \frac{\sigma_3 - \sigma_2}{\varepsilon_3 - \varepsilon_2} \tag{3.102}$$

For $\epsilon_n{'} \geq \epsilon_3$

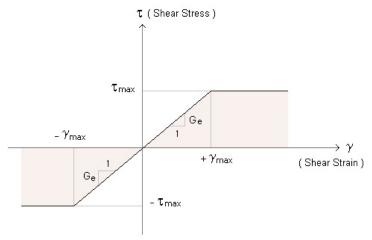
$$\mathsf{E} = \frac{\sigma_4 - \sigma_3}{\varepsilon_4 - \varepsilon_3}$$

3.6.4 Shear Stress-Strain Relation

The shear strength of joint is assumed to follow Mohr-Coulomb failure criterion.

$$\tau_{\text{max}} = C - \sigma_{\text{n}}' \tan \phi \tag{3.103}$$

where


 T_{max} Maximum shear stress

C Cohesion

φ Friction angle

 $\sigma_{n'}$ Normal stress (Tension is positive)

Shear stress-strain relation is assumed to be elastic below the strength envelope and perfectly plastic along strength envelope as shown below:

Thus, shear modulus (G) is computed as follow:

For
$$|\gamma| < \gamma_{max}$$
 G = G_e For $|\gamma| \ge \gamma_{max}$ G = 0 (3.104)

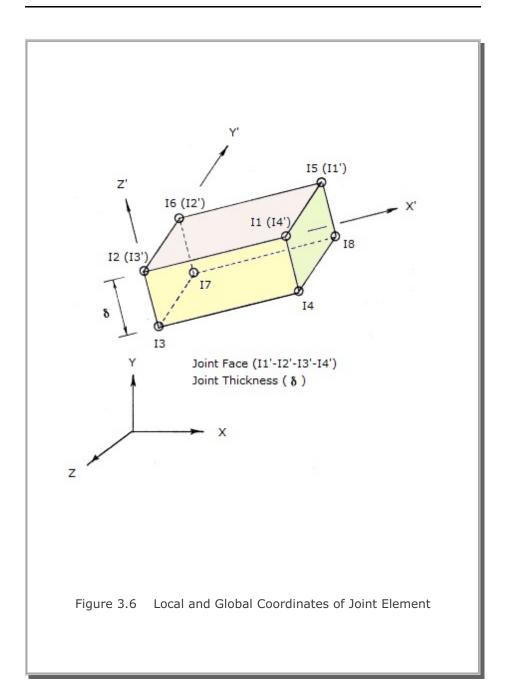
Note that G_e is the elastic shear modulus.

3.6.5 Element Stiffness Matrix

Joint stress-strain relation can be given by

$$\{\Delta \sigma'\} = [C'] \{\Delta \varepsilon'\} \tag{3.105}$$

where


$$\left\{ \Delta \sigma' \right\} \; = \; \left\{ \begin{array}{l} \Delta \tau'_{zx} \\ \Delta \tau'_{zy} \\ \Delta \sigma'_{zz} \end{array} \right\} \label{eq:delta-states}$$

$$[C'] = \begin{bmatrix} G & 0 & 0 \\ 0 & G & 0 \\ 0 & 0 & E \end{bmatrix}$$

Note that both volumetric and shear responses are assumed to be decoupled.

Following element stiffness matrix, [K], can be derived using the principle of virtual work:

[K] =
$$\int_{V} [B]^{T} [C'] [B] dv$$
 (3.106)

3.7 Generalized Decoupled Hyperbolic Model 3.7.1 Introduction

GDHM (Generalized Decoupled Hyperbolic Model) is the decoupled material model which is the generalized form of the original hyperbolic model (Duncan and Chang, 1970). Main features of GDHM include:

- Hoek and Brown in situ rock strength model and
- Strength envelope expressed as a function of Lode angle on octahedral plane

3.7.2 Stress-Strain Relation

It is assumed that volumetric behavior is not coupled with deviatoric behavior. Thus, we have two independent equations:

$$dp = K \cdot d\epsilon_{v}$$

$$d\tau_{oct} = 2 \cdot G \cdot d\gamma_{oct}$$
(3.107)

where

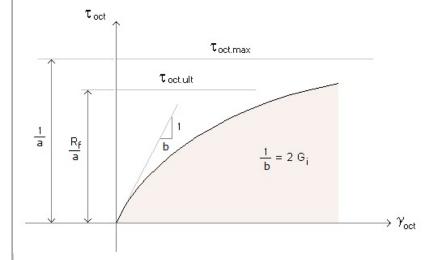
р Mean pressure

Volumetric strain ε_{v}

Octahedral shear stress

Octahedral shear strain γ_{oct}

Bulk modulus


G Shear modulus

At constant mean pressure and constant Lode angle, the shear stressstrain relation is assumed to be hyperbolic.

That is

$$\tau_{\text{oct}} = \frac{\gamma_{\text{oct}}}{b + a \gamma_{\text{oct}}}$$
 (3.108)

As shown in the following figure, T_{oct} approaches to the maximum shear stress, $T_{\text{oct.max}}$, as γ_{oct} goes to infinity. And the slope of the Equation 3.109 at $\gamma_{\text{oct}}=0$ is equal to 1/b. Most triaxial compression tests, however, show that ultimate shear strength, $T_{\text{oct.ult}}$, is reached at finite value of γ_{oct} and $\gamma_{\text{oct.ult}}$ is approximately 70~90% of $\gamma_{\text{oct.max}}$.

That is,

$$\frac{1}{a} = \tau_{\text{oct.max}} = \frac{1}{R_f} \tau_{\text{oct.ult}}$$
(3.109)

$$\frac{1}{b} = 2 G_i \tag{3.110}$$

where

 R_f Material constant (0.7~0.9)

G Initial shear modulus

Differentiating Equation 3.109 with respect to γ_{oct} ,

$$\frac{d\tau_{oct}}{d\gamma_{oct}} = \frac{b}{(b + a\gamma_{oct})^2}$$
 (3.111)

Solving for γ_{oct} from Equation 3.108,

$$\gamma_{\text{oct}} = \frac{b \tau_{\text{oct}}}{(1 - a \tau_{\text{oct}})} \tag{3.112}$$

Now, substituting Equation 3.113 into 3.112, we obtain the following loading shear modulus:

$$G = G_{i} \left(1 - \frac{\tau_{oct}}{\left(\frac{1}{a}\right)} \right)^{2} \tag{3.113}$$

3.7.3 Shear Strength Equation

Kim (1984) presented the following generalized form of ultimate shear strength equation:

$$\tau_{\text{oct.ult}} = \frac{\sqrt{2}}{3} \left[(\alpha + \beta p)^n + \kappa \right] R(\theta)$$
 (3.114)

The strength parameters $(n, \alpha, \beta, \kappa)$ are tabulated in Table 3.1 and $R(\theta)$ is given by the Equation 3.4. Note that the strength equation represents Von Mises Model when n=1, Hoek and Brown In Situ Rock Model when n=1/2, and Mohr-Coulomb or Drucker-Prager Model when n=1.

Substituting Equation 3.110 into 3.115,

$$\frac{1}{a} = \frac{1}{R_f} \frac{\sqrt{2}}{3} \left[(\alpha + \delta p)^n + \kappa \right] R(\theta)$$
 (3.115)

Now, combining Equations 3.114, 3.115 and 3.116, the generalized loading shear modulus, G_i is given by

$$G = G_{i} \left[1 - \frac{R_{f} \tau_{oct}}{\tau_{oct}} \right]^{2}$$
(3.116)

The initial shear modulus, G_i, in Equation 3.117 may be obtained from the following empirical equations:

For cohesive soil (Hardin and Black, 1968)

$$G_i = 1230 \frac{(2.973 - e)^2}{(1 + e)} \overline{\sigma}_{oct}^{1/2} OCR^K$$
 (3.117)

where

e Void ratio

OCR Overconsolidation ratio

K Parameter expressed as a function of plasticity index.

Note that stress unit is psi

For cohesionless soil (Janbu, 1963)

$$G_i = \frac{1}{2(1+\nu)} K_{ur} P_a \left(\frac{\sigma_3}{P_a}\right)^n$$
 (3.118)

where

v Poisson's ratio

 $\begin{array}{ll} P_a & \text{Atmospheric pressure} \\ K_{ur,} n & \text{Material constants} \\ \sigma_3 & \text{Confining pressure} \end{array}$

It should be noted that Equation 3.117 can be degenerated to the original Duncan and Chang's hyperbolic model when Mohr-Coulomb strength envelope is specified along the triaxial compression mode.

That is,

$$\tau_{\text{oct}} = \frac{\sqrt{2}}{3} \left(\sigma_1 - \sigma_3 \right) \tag{3.119}$$

$$\tau_{\text{oct.ult}} = \frac{\sqrt{2}}{3} (\sigma_1 - \sigma_3)_{\text{ult}}$$

$$= \frac{6 \text{ Sin}\phi}{(3 - \text{Sin}\phi)} P + \frac{6 \text{ Cos}\phi}{(3 - \text{Sin}\phi)} C$$
(3.120)

where

$$P = \frac{1}{3} (\sigma_1 + 2 \sigma_3) \tag{3.121}$$

Substituting Equation 3.122 into 3.121 and solving for $\sigma_{\!\scriptscriptstyle 1}\text{,}$ we obtain

$$\sigma_1 = \frac{(1 + \text{Sin}\phi)}{(1 - \text{Sin}\phi)} \sigma_3 + \frac{2 \text{Cos}\phi}{(1 - \text{Sin}\phi)} C$$
 (3.122)

Backsubstituting $\sigma_{\!\scriptscriptstyle 1}$ in Equation 3.123 into the right hand side of Equation 3.121,

$$\tau_{\text{oct.ult}} = \frac{\sqrt{2}}{3} \frac{(2 \sin \varphi \ \sigma_3 + 2 \cos \varphi \ C)}{(1 - \sin \varphi)}$$
(3.123)

Now, substituting Equations 3.120 and 3.124 into 3.117, we can obtain the following Duncan and Chang Hyperbolic Model (1970):

$$G = G_{i} \left[1 - \frac{R_{f} (1 - \sin \phi) (\sigma_{1} - \sigma_{3})}{2 \sin \phi \sigma_{3} + 2 \cos \phi C} \right]^{2}$$
(3.124)

References

Ahrens, T.J., <u>Equation of State of Earth Media</u>, Report to Defense Nuclear Agency, DNA-TR-88-265, Washington, D.C. November 1988.

Allen, R.T., <u>Equation of State of Rocks and Minerals</u>, Defense Atomic Support Agency, DA49-146-XZ-462, Project No. 532, March 1967.

Bakanova, A.A., V.N. Zubarev, Y.N. Sutulov, and R.F. Trunin, Thermodynamic Properties of Water at High Pressures and Temperatures, Soviet Phys. JETP, 41, 544, 1976.

Biot, M.A., <u>Theory of Propagation of Elastic Waves in Fluid Saturated Porous Solid. I, II, Journal of Acoustical Society of America, Vol. 28, pp 168-191, 1956.</u>

Biot, M.A., <u>Mechanics of Deformation and Acoustic Propagtion in Porous media</u>, Journal of Applied Physics, Vol. 33, pp 1482-1498, 1962A.

Biot, M.A., <u>Generalized Thoery of Acoustic Propagation in Porous</u>
<u>Dissipative Media,</u> Journal of Acoustical Society of America, Vol. 34, pp 1254-1264, 1962B.

Blouin, S.E., and K.J. Kim, <u>Undrained Compressibility of Saturated Soil,</u> DNA-TR-87-42, Defense Nuclear Agency, Washington, D.C., February 1984.

Blouin, S.E., D.E. Chitty, A.F. Rauch, and K.J. Kim, <u>Dynamic Response of Multiphase Porous Media</u>, Annual Technical Report 1, Report to U.S. Air Force Office of Scientific Research, Washington D.C., March 1990.

Blouin, S.E., D.E. Chitty, A.F. Rauch, and K.J. Kim, Dynamic Response of Multiphase Porous Media, Annual Technical Report 2, Report to U.S. Air Force Office of Scientific Research, Washington D.C., June 1991

Borja, Ronaldo I., Generalized Creep and Stress Relaxation Model for Clays, Journal of Geotechnical Engineering, Vol. 118, No. 11, November 1992.

Britt, J.R., Behavior of Water in Low Pressure Region, unpublished manuscript, 1985.

Dass, W.C. and D.H. Merkle, Computational Aspects of the ARA Three Invariant Constitutive Model, Report to U.S. Air Force Office of Scientific Research Washington, D.C., May 1986.

D avid E. Van Dillen, etc., Modernization of the BMINES Computer Code Vo. I: User's Guide, Agbabian Associates, Sep. 1981.

Duncan, J.M., and C. Y. Chang, Nonlinear Analysis of Stress and Strain in Soils, J. Soil Mech. Found. Div. ASCE, vol. 96, no. SM5, pp. 1629-1653, September, 1970.

E.L.Lee, H.C.Hornig, and J.K.Kury, Adiabatic Expansion of High Explosive Detonation Products, UCRL-50422, Lawrence Livermore National Laboratory, California, May 2, 1968.

Hardin, B.O. and W.L Black, Vibration Modulus of Normally Consolidated Clays, J. Soil Mech. Found. Div., ASCE, vol. 94, no. SM2, pp. 353-369, March 1968.

Forchheimer, P., Wasserbewegung durch Boden, Z. Ver. Deutsch Ing., 45 pp. 1782-1788, 1901.

Ghaboussi, J., and E. L. Wilson, Variational Formulation of Dynamics of Fluid-Saturated Porous Elastic Solids, Journal of the Engineering Mechanics Division, ASCE, Vol. 98, pp 947-963, 1972.

Gibson, R.E., The Progress of Consolidation in a Clay Layer Increasing in Thickness with Time, Geotechnique, Vol. 8, No. 4, pp. 171-182.

Hoek, E. and E.T. Brown, <u>Underground Excavations in Rock, The</u> Institution of Mining and Metallurgy, London, England, 1982.

Janbu, Nilmar, Soil Compressibility as Determined by Oedometer and Triaxial Tests, Proc. Eur. Conf. Soil Mech. Found. Eng., Wiesbaden, 1963, vol. 1, pp. 19-25.

Karshenas, M. and J. Ghaboussi, <u>Modeling and Finite Element Analysis of Soil Behavior</u>, Civil Engineering Studies, Geotechnical Research Series No. 17, University of Illinois, Urbana, 1979.

Kim, K. J., <u>Finite Element Analysis of Nonlinear Consolidation</u>, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1982.

Kim, K.J. and S.E. Blouin, <u>Response of Saturated Parous Nonlinear</u>
<u>Materials to Dynamic Loadings</u>, Report to Air Force Office of Scientific Research, Washington, DC, F49620-81-C-0014 (May 1984).

Kim, K.J., S.E. Blouin, and D.A. Timian, <u>Experimental and Theoretical Response of Multiphase Porous Media to Dynamic Loads</u>, Annual Report No. 1 to Air Force Office of Scientific Research, Washington, D.C., 1986.

Kim, K.J., S.E. Blouin, and D.A. Timian, <u>Experimental and Theoretical Response of Multiphase Porous Media to Dynamic Loads</u>, Annual Report No. 2 to Air Force Office of Scientific Research, Washington, D.C., 1987.

Kim, K.J., S.E. Blouin, D.E. Chitty, and D.H. Merkle, <u>Experimental and Theoretical Response of Multiphase Porous Media to Dynamic Loads</u>, Final Report to Air Force Office of Scientific Research, Washington, D.C., 1988.

Kim, M.K. and P.V. Lade, <u>Single Hardening Constitutive Model for Frictional Materials</u>, 1. <u>Plastic Potential Function</u>, Computers and Geotechnics, 5(4), 307- 324, 1988.

Lade, P.V., Elasto-plastic Stress-Strain Theory for Cohesionless Soil with Curved Yield Surfaces, Int. J. Solids Struct., 13, 1019-1035, 1977.

Lade, P.V. and R.B. Nelson, Modelling the Elastic Behavior of Granular Materials, International Journal for Numerical and analytical Methods in Geomechanics, Vol. II, pp.521-542, 1987.

Lade, P.V., Single-Hardening Model with Application to NC Clay, J. Geotech. Engrg., ASCE, 116 (3), 394-414, 1990.

Lade, P.V. and M.K. Kim, Single Hardening Constitutive Model for Frictional Materials, III. Comparisons with Experimental Data, Computers and Geotechnics, 6(1), 30-47. 1988b.

Mendelson, A., Plasticity: Theory and Application, The MacMillan Company, New York (1968).

Mengi, Y., and H.D. McNiven, Fluid-filled Porous Media to a Transient Input, Journal of Acoustical Society of America, Vol. 61, pp 84-94. 1977.

Merkle, D.H. and W.C. Dass, Fundamental Properties of Soils for Complex Dynamic Loadings: Development of a Three Invariant Constitutive Model, Report to the U.S. Air Force Office of Scientific Research, Washington, D.C., April 1985.

Piepenburg, D.D., K.J. Kim and M.D. Davister, Numerical Analysis of Nonlinear Liner-Medium Interaction. Tunnels Subjected to Biaxial Loading Vol. III, Technical Report to Defense Nuclear Agency, Washington, D.C., DNA-TR-86-138-V3, December 1986.

Rischbieter, F., et al., Studies of Soil Liquefaction by Shock Wave Loading, Fifth International Symposium on Military applications of Blast Simulation, Vol. III, Royal Swedish Fortifications Administration, Stockholm, Sweden, May 1977.

Singh, Awtar and James K. Mitchel, Generalized Stress-Strain-Time Functions for Soils, Journal of the Soil Mechanics and Foundation Division, ASCE, 21-46, 1968.